
A MARSHALL CAVENDISH t 	COMPUTER COURSE IN WEEKLY PARTS

LEARN PROGRAMMING - FOR FUN AND THE FUTURE

Vol* 3 	 No 36

GAMES PROGRAMMING 37

FOX AND GEESE GAME-2 	 1113

Put theory into practice and start initializing
INPUT's intelligent game

APPLICATIONS 23

ARTING WITH SPREADSHEETS 	111

Spreadsheets are among the most widely used
programs. Start entering INPUT's spreadsheet

MACHINE CODE 37

CLIFFHANGER: RESETTING VARIABLES 1127

Drain the sea, blow the clouds and make Willie
stand ready on the starting line

BASIC PROGRAMMING 75

MORE ABOUT PAGED GRAPHICS, 	1132

Extend your animation skills using advanced
paged graphics techniques

BASIC PROGRAMMING 76

ENVELOPE SOUNDS

Produce sophisticated, life-like sounds on the
Commodore 64 and Acorn machines

INDEX
The last part of INPUT, Part 52, will contain a complete, cross-referenced index.
For easy access to your growing collection, a cumulative index to the contents
of each issue is contained on the inside back cover.

PICTURE CREDITS
Front cover, Dave King. Pages 1113, 1114, 1115, 1116, 1117, Grant Symon.
Pages 1119, 1120, 1122, 1124, Michael Strand. Pages 1126, 1142, 1143, Berry
Fallon Design. Pages 1127, 1128, 1130, Alistair Graham. Pages 1132, 1134, Dave
King. Page 1137, Advertising Arts. Pages 1136, 1137, 1141, Peter Reilly. Pages
1138, 1140, 1142, 1144, Kate Charlesworth.

© Marshall Cavendish Limited 1984/5/6
All worldwide rights reserved*

The contents of this publication including software, codes, listings,
graphics, illustrations and text are the exclusive property and copyright of
Marshall Cavendish Limited and may not be copied, reproduced,
transmitted, hired, lent, distributed, stored or modified in any form
whatsoever without the prior approval of the Copyright holder.

Published by Marshall Cavendish Partworks Ltd, 58 Old Compton Street, London W1V SPA,
England. Typeset by MS Filmsetting Limited, Frome, Somerset. Printed by Cooper Clegg
Web Offset Ltd, Gloucester and Howard Hunt Litho, London.

HOW TO ORDER
YOUR BINDERS
UK and Republic of Ireland:
Send £4.95 (inc p & p) (IRL5.95) for
each binder to the address below:

Marshall Cavendish Services Ltd,
Department 980, Newtown Road,
Hove, Sussex BN3 7DN

Australia: See inserts for details, or
write to INPUT, Times Consultants,
PO Box 213, Alexandria, NSW 2015

New Zealand: See inserts for details, or
write to INPUT, Gordon and Gotch
(NZ) Ltd, PO Box 1595, Wellington
Malta: Binders are available from local
newsagents.

''here are four binders each holding 13 issues.

BACK NUMBERS
Back numbers are supplied at the regular cover price (subject to availability).

UK and Republic of Ireland:
INPUT, Dept AN, Marshall Cavendish Services,
Newtown Road, Hove BN3 7DN

(ustralia, New Zealand and Malta:
Back numbers are available through your local newsagent.

COPIES BY POST
Sur Subscription Department can supply copies to any UK address regularly at L1.00 each.
For example the cost of 26 issues is £26.00; for any other quantity simply multiply the number
>f issues required by L1.00. Send your order, with payment to:

Subscription Department, Marshall Cavendish Services Ltd,
Newtown Road, Hove, Sussex BN3 7DN

['lease state the title of the publication and the part from which you wish to start.

HOW TO PAY: Readers in UK and Republic of Ireland: All cheques or postal orders
or binders, back numbers and copies by post should be made payable to:
Marshall Cavendish Partworks Ltd.

QUERIES: When writing in, please give the make and model of your computer, as
well as the Part No., page and line where the program is rejected or where it does
not work. We can only answer specific queries - and please do not telephone. Send
your queries to INPUT Queries, Marshall Cavendish Partworks Ltd, 58 Old
Compton Street, London W IV SPA.

INPUT IS SPECIALLY DESIGNED FOR:
The SINCLAIR ZX SPECTRUM (16K, 48K,128 and +),
COMMODORE 64 and 128, ACORN ELECTRON, BBC B
and B+, and the DRAGON 32 and 64.

In addition, many of the programs and explanations are also
suitable for the SINCLAIR ZX81, COMMODORE VIC 20, and
TANDY COLOUR COMPUTER in 32K with extended BASIC.
Programs and text which are specifically for particular machines
are indicated by the following symbols:

SPECTRUM 1611,
488,128, and + ‘si COMMODORE 64 and 128

ACORN
 B and B+B+ 114 DRAGON 32 and 64

TANDY TRS80
D(81 	VIC 20 IT COLOUR COMPUTER

HOW THE PROGRAM WORKS
INITIALIZATION

STARTING THE GAME
MAPPING MOVES

ANOTHER GO?

Use the last part's theory to start
writing the Fox and Geese game*
Here are the routines to initialize the
game, and to map moves

This time enter initialization routines, and
the vital mapping routine. You can also offer

the player another go, but at this stage
RUNning the program will be no use, as there
are still many important routines to add.

In the next part of Fox and Geese you'll
enter the thinking routines.

OVERVIEW
The program works by evaluating each po-
sition in the game according to the configur-
ation of the pieces. Each position is given a
numeric value by the program, so when
looking ahead, the program is able to choose
the best move by looking for the outcome
with the highest value.

The program works in three ways when
looking ahead. In its crudest workings (level
one) it only looks one move ahead—it is a so-
called 'one-mover'. At the higher levels of
play it uses the alpha-beta algorithm to save
time in searching through the ever-
multiplying branches of possibilities. At in-

termediate levels the program looks through
all the possibilities open to it.

The routines from Line 2010 to Line 3000
are only executed once, so they have been
placed at the end of the program. With these
seldom-used routines placed here, the main
routines can be placed near the front of the
program for speed—see pages 921 to 927.

INITIALIZATION
Here are the routines for all machines which
are used to initialize the game. Arrays are
DIMensioned, and FuNctions are DEFined.
Three machines define the board graphics:

2010 DIM G(4): DEF FN U(A) =INT
(A-4 * 1NT (A/4)): DEF FN V(A) = INT
(A-8 * 1NT (A/8)) > =4: DEF FN
W(A) = INT (A —2 * 1NT (A/2))

2015 LET HF = 0: LET HG = 0
2020 DIM B(32): LET B(1) =1: FOR 1=1 TO

31: LET B(1+1)=13(1) * 2: NEXT I
2026 LET BX = B(32)*2 — B(25): LET

E =1E30: LET H= —1E30
2030 LET L2 = LN (2)
2040 DIM B$(16,2,16): DIM G$(2,4): LET G$

(1)="MME1 El":LET G$(2)="/Ill"
+ CHR$ 146 + CHR$ 147: DIM H$(2,4):
LET H$(1)=" ❑ DM M": LET H$
(2)=CHR$ 146+CHR$ 147+"//1"

2050 LET X=1: FOR A=1 TO 2: FOR B=1
TO 2: FOR C=1 TO 2: FOR D=1 TO 2:
LET B$(X,1)=G$(D)+G$(C)+G$(B)+
G$(A)

2060 LET B$(X,2)= H$(A) + I -3(B) + H$
(C)+H$(D): LET X=X+1: NEXT D:
NEXT C: NEXT B: NEXT A

2070 DIM S$(8,16): GOSUB 6000
2090 DIM F$(2,4): LET F$(1) = "II 	+

CHR$ 144 + CHR$ 145: LET F$(2)=
CHR$ 144+CHR$ 145+".."

2095 DEF FN C(B)= FN U(B —1)*(4-8*FN
V(B-1))+12 * FN V(B--1)

3 PRINT "01 	gr;CHR$(8)
4 X=16:FOR Z=0 T0 15:POKE 646,Z:IF

Z=6 THEN NEXTZ
5 X = X-1:POKE646,Z:PRINTTAB(5 + X)

"Ea FOX AND GEESEErNEXTZ
10 POKE 53272,19:GOT02010
2010 DIMG(4)
2020 DIMB(31):B(0) =1:FORI =1T031:

B(I) = B(1-1)*2:NEXTI
2026 BX= B(31) * 2— B(24):E =1E30:H =

— 1E30
2030 L2 LOG(2):DEFFNA(F)= INT(LOG(F)/

L2+ .001)
2040 DIMB$(15,1):DIMG$(1):G$(0)=" ❑

p ❑ E":G$(1)="1:1=11:1X"
2045 DIMH$(1):H$(0)= 	❑❑ ":H$

(1)="1:1X ❑❑ "
2050 X =0:FORA = 0T01:FORB = 0T01:

FORC=0T01:FORD=0T01:B$(X,0)=
G$(D) + G$(C) + G$(B) + G$(A)

2060 B$(X,1) = H$(A) + H$(B) + H$(C) +
H$(D):X = X +1:NEXTD,C,B,A

2070 DIMS$(7):FORA=0TO6STEP2:FORB=
A * 4T0A*4 + 3

2080 S$(A) = S$(A) + ❑ p" + RIGHT$
(STR$(B),2)

2081 S$(A +1) = RIGHT$(STR$(B +4),2) +
"1171"+S$(A+1)

2082 NEXTB,A
2090 DIMF$(1):F$(0) = "DJ Al; f":

F$(1)=":0 +1=JD"
2095 DEFFNC(B) = (3ANDB) *

(4 — 2*(4ANDB)) +3*(4ANDB)

Ell
30 GOTO 2010
2010 DIMG(4)
2020 DIMB(31):B(0) =1:FOR 1=1 TO 31:

B(I)= B(1-1) * 2:NEXTI
2026 BX= B(31)*2— B(24):E = 1E30:H = —

1E30
2027 L2= LOG (2)
2030 DEF FNA(F) = INT(LOG(F)/L2 + .001)
2040 DIMB$(15,1):DIMG$(1):G$(0)=

CHR$228+CHR$229+
CHR$32 + CHR$32:G$(1) = CHR$
228 + CHR$229 + CHR$224+CHR$225

2045 DIMH$(1):H$(0)=CHR$32+
CHR$32+CHR$228+ CHR$229:H$(1)=
CHR$224+CHR$225+ CHR$228+

CHR$229
2050 X =0:FOR A=0 TO 1:FOR B=0 TO

1:FOR C=0 TO 1:FORD= 0 TO
1:E3(X,0)=G$(D) + G$(C) + G$(B) +
G$(A)

2060 B$(X,1) = H$(A) + H$(B) + H$(C) +
H$(D):X=X+ 1:NEXTD,C,B,A

2070 DIMS$(7):FOR A=0 TO 6 STEP2:
FORB = A * 4TOA*4 + 3

2080 S$(A) = S$(A) + CHR$230 + CHR$231
2081 IFB <10 THEN S$(A)=S$(A)+

"LI" + STR$(B) ELSE S$(A)= WA) +
STR$(B)

2083 S$(A + 1) = CHR$230 + CHR$231+S$
(A +1)

2084 IF (B+4)<10 THENS$(A+1)=
"s" + STR$(B + 4) + S$(A + 1)
ELSE S$(A+ 1) =STR$(B + 4) +
S$(A+1)

2087 NEXTB,A
2090 DIMF$(1):F$(0)=CHR228+ CHR$

229 + CHR$226 + CHR$227:F$(1) =
CHR$226+CHR$227+CHR$228+
CHR$229

2095 DEFFNC(B)= (3 AND Br (4-2*(4 AND
B)) +3*(4 AND B)

AC
10 GOTO 2010
2010 DIM G(4),B(31),M(3,31),X(31),Z(31)
2020 B(0) = 1:FORK = 1T031:B(K) =

B(K — 1)*2:NEXT
2026 BX = B (31)*2 — B(24):E = 1E30:H = 1

E30
2030 L2= LOG(2):DEFFNA(F) = INT(LOG

(F)/L2+ .001)

Line 2010 DIMensions the array used for
storing the positions of the geese. Line 2020
numbers each square on the board that will be
used in the game.

Line 2030 sets up the number of configur-
ations that can be evaluated by the program.
0.001 has been added when DEFining
FuNction A to prevent rounding errors when
taking LOGarithms. Array B$, DIMensioned in
Line 2040, is used for displaying rows on the
board complete with pieces. F$ is used for the
fox piece and blank square, and H$ for the
geese and blank square. S$ is used to setup
the numbers on the squares.

The Dragon and Tandy program does not
have this section of program because the
graphics board is set up in high resolution
graphics.

AT THE START
This routine allows the player to choose who
plays what, and to select the computer's skill
level. Not too difficult at first!

2700 LET F=2: LET G(1)=29: LET
G(2)=30: LET G(3)=31: LET G(4)=32:
GOSUB 2710: GOTO 1010

2710 CLS : PRINT AT 0,9; INK 1;"FOX AND
GEESE": INPUT "DO YOU WANT ..."; TAB
5;"TO PLAY FOX ? (y/n)";I$

2720 LET PF =0: IF 1$ = "Y" OR 1$= "y"
THEN GOTO 2760

2730 LET PF =1: IF 1$ < >"N" AND
1$ < >"n" THEN GOTO 2710

2740 INPUT "LEVEL OF FOX SKILL? ";SF: IF
SF <1 OR SF >10 THEN GOTO 2740

2750 LET HF =131 * (SF = 5) + 613 * (SF =6) +
1997*(SF > 6)

2760 INPUT "DO YOU WANTIII";TAB 5;"TO
PLAY GEESE? (y/n)";I$

2770 LET PG =0: IF I$="Y" OR I$ ="y"
THEN GOTO 2860

2780 LET PG =1: IF 1$ < >"N" AND
1$ < >"n" THEN GOTO 2760

2790 INPUT "LEVEL OF GEESE SKILL ❑ "; SG:
IF SG <1 OR SG >10 THEN GOTO 2790

2800 LET HG =131* (SG = 5) + 613"
(SG=6)+1997*(SG>6): IF HF<HG
THEN LET HF=HG

2860 INPUT "DO YOU WANT TO ALTER THE
❑ ❑ ❑ III III III ❑ ❑ STARTING POSITION
? ";I$: IF 1$ ="N" OR I$="n" THEN
GOTO 3000

2880 IF 1$ < >"Y" AND 1$ < >"y" THEN
GOTO 2860

2890 GOSUB 210: GOSUB 310: INPUT "DO
YOU WANT TO MOVE FOX ? ";I$

2900 IF 1$ ="N" OR 1$= n" THEN GOTO
2930

2910 IF 1$ < >"Y" AND 1$ < >"y" THEN
GOTO 2890

2920 INPUT "MOVE FOX TO -❑ ";F: IF F<1
OR F > 32 THEN GOTO 2920

2930 FORG =1 TO 4: GOSUB 210: GOSUB
310

2940 INPUT "DO YOU WANT TO MOVE
GOOSE AT ";(G(G));" ? ";I$

2950 IF 1$ ="N" OR I$="n" THEN GOTO
2990

2960 IF 1$ < >"Y" AND 1$ < >"y" THEN
GOTO 2940

2970 INPUT "MOVE GOOSE TO ";I: IF FN X(I)
OR I= F THEN GOTO 2960

2972 IF I <1 OR I >32 THEN GOTO 2970
2980 LET G(G) =I
2990 NEXT G: IF FN X(F) THEN PRINT

"THERE IS A GOOSE UNDER THE FOX":
FOR 1=1 TO 1500: NEXT I:
GOTO 2910

3000 RETURN

2500 DIM R(1999),S(1999)
2700 F =1:G(1) = 28:G(2) = 29:G(3)=30:

G(4) = 31:GOSUB2710:GOT01010
2710 PRINT"ODO YOU WANT TO PLAY FOX

((YIN)? "

2720 GET 1$:PF = 0:IF1$="Y"THEN2760
2730 PF=1:IF1$< >"N"THEN2720
2740 SF= 0:1NPUT"OLEVEL OF FOX SKILL

(1 —10)";SF:IFSF <10RSF> 10THEN2740
2750 HF —131*(SF = 5) —613 * (SF =6) —

1997*(SF > 6)
2760 PRINT"DDO YOU WANT TO PLAY

GEESE (Y/N)?"
2770 GET I$:PG = 0:IF1$="Y"THEN2860
2780 PG =1:IF1$ < >"N"THEN 2770
2790 SG = 0:INPUT"OLEVEL OF GEESE

SKILL (1 —10)";SG:IFSG <10RSG >10
THEN2790

2800 HG= —131*(SG =5) —613* (SG =6)
—1997*(SG>6):IFHF<HGTHEN HF=HG

2860 PRINT"EIDO YOU WANT TO ALTER
THE STARTING"

2870 PRINT "POSITION (Y/N)?"
2875 GET 1$:IF 1$ ="N"THEN3000
2880 IF ► $ < >"Y"THEN2875
2890 GOSUB210:GOSUB310:PRINT"DO YOU

WANT TO MOVE THE FOX (Y/N? ❑ ";
2900 GET 3:IF1$="N"THEN2930
2903 IF 1$ < >"Y"THEN2900
2915 PRINT "Y"
2920 INpur"pnipipill pain

MOVE FOX TO";F:IFF<00RF>31
THEN 2920

2925 GOSUB340
2930 FORG=1T04:GOSUB210:GOSUB310
2940 PRINT "DO YOU WANT T0 MOVE THE

GOOSE AT";G(G):PRINT"(Y/N)? ❑ ";
2950 GET 1$:IF1$ = "N"THEN2950
2960 IF1$ < >"Y"THEN2990
2965 PRINT "Y"
2970 INPUT4INNIPIPMEIPJMOVE

GOOSE TO";I:GOSUB340
2971 IFFNX(I)ORI = FTHENPRINTTAB(8);

"ALREADY 0CCUPIED":GOT02940
2972 IFI <00R1> 31THEN2970
2980 G(G) =I
2990 NEXTG:IFFNX(F)THEN PRINTTAB(8);

"THERE IS A GOOSE UNDER THE FOX"
2995 FORT =1T01500:NEXTI
3000 RETURN

2700 F =1:G(1) = 28:G(2) =29:G(3) = 30:
G(4) = 31:GOSUB2710:GOT01010

2710 CLS:PRINT"DO YOU WANT TO PLAY
FOX (Y,N) ?"

2720 1$= GET$:PF = 0:IF1$="Y" THEN
2760

2730 PF=1:IF1$< >"N" THEN2710
2740 SF =0CLS:INPUT"LEVEL OF FOX SKILL

(1-10)" SF:IF SF<1 OR SF>10 THEN
2740

2750 HF= —131*(SF =5) — 613*(SF =6) —
947*(SF > 6)

2760 CLS:PRINT"DO YOU WANT TO PLAY
THE GEESE (Y/N) ?',

2770 1$ = GET$:PG =0:IF I$= "Y" THEN
2860

2780 PG =1:IF 1$ < >"N" THEN2760
2790 CLS:INPUT"LEVEL OF GEESE SKILL

(1-10)"SG:IFSG < 1ORSG > 10TH EN2790
2800 HG = —131*(SG =5) —613*(SG =6) —

947*(SG >6):IF HF<HG THEN HF=HG
2860 CLS:PRINT"DO YOU WANT TO ALTER

THE STARTING"
2870 PRINT"POSITION (YIN)?"
2875 I$=GET$:IF 1$ = "N" THEN 3000
2880 IF1$ < >"Y" THEN2860
2890 GOSUB210:GOSUB310:PRINT"DO YOU

WANT TO MOVE THE FOX (Y,N)? ";
2900 1$= GET$: IF 1$ = "N" THEN 2930
2910 IF 1$ < >"Y" THEN 2890
2915 PRINT"Y"
2920 INPUTTAB(8)"MOVE FOX TO" F:IF

F<0 OR F > 31 THEN 2920
2925 GOSUB340
2930 FOR G =1 TO 4:GOSUB210:GOSUB310
2940 PRINT"DO YOU WANT TO MOVE THE

GOOSE ATE ";G(G):PRINT"(Y/N)?";
2950 1$ = GET$:IF 1$ = "N" THEN 2990
2960 IF1$ < >"Y" THEN 2940
2965 PRINT"Y"
2970 INPUTTAB(8)"MOVE GOOSE TOE "I
2971 IF FNX(I) OR I= F THEN PRINT

TAB(8)"ALREADY OCCUPIED":GOTO
2940

2972 IF I <0 OR I>31 THEN 2970
2980 G(G)=I
2990 NEXTG:IFFNX(F) THEN PRINT

TAB(8)"THERE IS A GOOSE UNDER THE
FOX":FOR I =1 TO 1500:NEXTI:GOTO
2890

3000 RETURN

1
2500 DIM R(1500),S(1500)
2700 F =1:G(1) = 28:G(2) = 29:G(3) = 30:

G(4) = 31:GOSUB2710:GOT01010
2710 CLS:PRINT "DO YOU WANT HUMAN TO

PLAY FOX 1110E(Y/N)111?";
2720 K$=INKEY$:IF K$ < >"Y" AND

K$ < >"N" THEN 2720
2730 PRINTK$:PF =1:IF K$="Y" THEN

PF = 0:GOT02760
2740 PRINT:PRINT "LEVEL OF FOX SKILL

(0-9) CI ?";
2745 K$ =1NKEY$:IFK$ < "0"ORK$ > "9"

THEN2745
2746 SF = VAL(K$) +1:PRINTK$
2750 HF= —131 * (SF = 5) —613*(SF =6) —

1499*(SF >6)
2760 PRINT:PRINT" Ill DO YOU WANT

HUMAN TO PLAY GEESE (Y/N) III?";
2770 K$=INKEY$:IF K$< >"Y" AND

K$ < >"N" THEN 2770
2780 PRINTK$:PG =1:IF K$="Y" THEN

PG = 0:GOT02860
2790 PRINT:PRINT"LEVEL OF GEESE SKILL

(0 — 9) ?";
2795 K$=INKEY$:IF K$<"0" OR K$ >"9"

THEN2795
2796 SG =VAL(K$) +1:PRINTK$
2800 HG= —131*(SG =5) —613*(SG =6) —

1499*(SG >6):IF HF<HG THEN HF=HG
2860 PRINT:PRINT" ❑ DO YOU WANT TO

CHANGE THE El 1111111111110
STARTING POSITIONS (Y/N)?";

2870 K$=INKEY$:IF K$ < >"Y" AND
K$ < >"N" THEN 2870

2880 IF K$="N" THEN3000
2890 GOSUB210
2920 DRAW"BM180,80" + MW$:XX =

FNXX(1):YY = FNYY(1):GOSUB1810:F = 4*
INT(YY/20):F= FNCN(F)

2925 PUT(68,8) — (87,27),SQ,PSET:PUT
(XX,YY + 5) — (XX +19,YY +13),FX,PSET

2930 FORG = 1T04:GOSUB210
2940 XX= FNXX(G(G)):X1 = XX:YY = FNYY

(G(G)):Y1 =YY:GOSUB1810:PUT
(X1,Y1)— (X1 +19,Y1+19),SQ,PSET

2950 I= 4*INT(YY/20):1 = FNCN(I)
2960 IF(FNX(I) ORI= F)ANDI < > G(G)

GOSUB5000:GOT02940
2970 PUT(XX,YY +5)— (XX +19,YY +14),GS,

PSET:G(G) =I
2990 NEXT:IF FNX(F) GOSUB5000:GOT02920
2995 C=1:G=G(1)
3000 RETURN

Line 2700 sets the starting position, with the
four geese occupying the four squares at the
bottom of the board, and the fox occupying
the second square from the left on the top
row.

After Line 2700 has initialized the starting
position of the fox and the geese, Lines 2710
to 2750 give the player the option of playing
fox, and prompt for a skill level from one to
ten if the computer is going to play fox. Lines
2760 to 2800 are similar, except the player is
given the option of playing geese.

The game has been designed to allow
adjustment of the starting position, either
allowing you to continue where you left off
last time (you will need to take note of the
positions of the pieces when the game ended,
or to try winning (or losing!) from a parti-
cularly interesting position. The lines from
2860 to 3000 ask if the player wants to alter
the starting position, give prompts, and make
sure that the positions chosen are legal.

MAPPING MOVES
The mapping moves routine is one of the
most important in the program.

140 DEF FN X(B)=B=G(1) OR B=G(2) OR
B= G(3) OR B= G(4)

2100 DIM R$(8,16)
2142 DEF FN Z(B)= (B = G(1)) +

(B = G(2))*2 + (B = G(3))*3 + (B = G
(4))*4

2150 DIM M(4,32): DIM X(32): DIM Z(32)
2160 FOR B=1 TO 32: LET

U = B —1 —4*INT (B/4—.2): FOR A=1
TO 4: LET M(A,B)= (B —2)-2*U + 8*
((B < 5) OR (A > 2)) + (A*7 —6)*(U = 3) +
(A=2) + (A=4): NEXT A: LET X(B)=
((B>4)+(B<29))*((U<3)+1): LET
Z(B)---(B>4)*((U<3)+1): NEXT B

2180 DIM V(11):DIM A(11):DIM F(11):
DIM P(11):DIM C(11):DIM R(1):DIM S(1)

2100 DIMR$(7)
2110 DEFFNF(B)=((B>3)+(B<28))*

(((3A-NDB) <3) — 1) —1
2120 DEFFNG(B) = (B > 3)*(((3ANDB) < 3) —

1) —1
2130 DEFFNM(A) = B — 2*(3ANDB) —2 — 8*

(B<40RA>1)— (1 +A*7)*
((3ANDB) = 3) + (1ANDA)

2140 DEFFNX(B)=(B=G(1)OR B=G(2)OR
B=G(3)OR B = G(4))

2142 DEFFNZ(B)= — (B = G(1)) — (B= G

(2))*2 — (B = G(3))*3 — (B = G(4))*4
2150 DIM M(3,31),X(31),Z(31)
2160 FOR B=0 TO 31:F0R A=0 TO 3: M(A,

B)=FNM(A): NEXTA: X(B)= FNF (B):

6,3)=FNG (B): NEXT B

2100 DIMR$(7)
2110 DEFFNF(B)=((B>3)+(B<28))*(((3

AND B) <3) —1)-1
2120 DEFFNG(B)=(B>3*)(((3ANDB)

<3)-1)-1
2130 DEFFNM(A)= B —2*(3 AND B)-2-8*

(B<4 OR A>1)—(1 +A*7)"((3 AND
B) = 3) + (1 AND A)

2140 DEFFNX(B) = (B= G(1) OR B = G(2)
OR B =G(3) OR B =G(4))

2142 DEFFNZ(B)= —(B=G(1))—(B=G
(2))*2 — (B = G(3))*3 — (B = G(4))*4

2150 DIM M(3,31),X(31),Z(31)
2160 FORB = 0T031:FORA = 0T03:M(A,B) =

FNM(A):NEXTA:X(B) = FNF(B):Z(B) =
FNG(B):NEXTB

2180 DIMP(10),V(10),F(10),A(10),C(10)
2500 DIMR(950),S(950):HF =0

MI in
2110 DEFFNF(B) = ((B >3) + (B<28))*

(((3ANDB) < 3) —1) —1
2120 DEFFNG(B) (B> 3)*(((3ANDB) <3)—

1) —1
2140 DEFFNX(B)=(B=G(1) OR (B=G(2)

OR (B=G(3) OR B=G(4))
2142 DEFFNZ(B)= —(B=G(1))—(B=G

(2))*2 — (B = G (3))*3 — (B = G(4))*4

2150 DEFFNXX(B)= — ((7ANDB) <4 *)
(28 + 40*(3ANDB)) — ((7ANDB) > 3)*
(128 — 40*(3ANDB))

2155 DEFFNYY(B) =8 +20*INT(B/4)
2156 DEFFNCN(B)= B— ((7ANDB) < 4)*

(XX — 28)/40 — ((7ANDB) > 3)*(128 — XX)
/40

2160 FORB = 0T031:FORA = 0T03:M
(A,B) = B — 2*(3ANDB) — 2 —8*
(B <40RA>1)— (1 +A*7)*
((3ANDB) = 3) + (1ANDA):NEXT:X(B) =
FNF(B):Z(B) = FNG(B):NEXT

Lines 2110 to 2160 build the map of fox and
geese moves in array M. Alongside this map,
the number of possible fox moves, array X,
and the number of possible goose moves,
array Z, are also set up. The arrays are copies
of the functions in Lines 2110 to 2142. the
Spectrum routine is shorter because of the
way the machine's logic works.

ANOTHER GO?
Now add an 'another go?' routine.

1410 INPUT "ANOTHER GAME (Y,N) ? ";I$
1420 IF 1$ = "Y" OR 1$ = "y" THEN G0TO

2700
1430 IF 1$ < >"N" AND 1$ < >"n" THEN

GOTO 1410
1440 STOP

1410, PRINTTAB(8);"ANOTHER GAME (Y/N)?"
1420 GET 1$:IF1$="Y"THEN2700
1430 IF1$ < >"N"THEN1420
1440 PRINT "DM": POKE 53272,21:END

1410 PRINTTAB(8);"ANOTHER GAME (YIN)?"
1420 1$= GET$:IF 1$ = "Y" THEN 2700
1430 IF 1$< >"N" THEN 1410
1440 CLS:END

1410 PRINT@390, "ANOTHER GAME (Y/N)?"
1420 K$=INKEY$:IF K$="Y" GOSUB4040:

CLS:GOT02700
1430 IF K$< >"N" THEN 1420
1440 CLS:END

These lines should be familiar by now, and
they come into play when the geese manage to
trap the fox, or the fox manages to reach the
opposite end of the board.

Do not try to RUN the program at this
stage, as there are many vital parts of the
program still to add. In the next part of the
article you'll add the routines which will allow
you to play the game.

If you find yourself having to deal
with lots of figures, then it's a good
time to enlist your micro's help—it's
probably a lot better with numbers
than you are

One numerical chore that afflicts most people
is keeping track of their own expenditure, and
INPUT's accounts program on pages 136 to
145 provides one way for the micro user to
sort out where the money is going. But now,
we look at a different system that is modelled
on the one used by professional accountants—
the spreadsheet*

Spreadsheets are among the most versatile
of all programs, with almost unlimited poten-
tial for handling numerical information. And
they are by no means restricted just to
financial data.

This article is in three parts. To start with,
there is a look at what a spreadsheet can do,
and what they are used for. Then, you will be
able to program your own simple spreadsheet,
using the listing which starts this time. You
will get detailed instructions on putting it to
work for you, in a later part.

WHAT IS A SPREADSHEET?
Spreadsheets utilise one of the biggest advan-
tages of a computer—its ability to make
calculations very quickly* In essence, even the
biggest of computers is simply a complex
adding machine* In fact, a computer can only
deal with numbers, as those who have dipped
into machine code will endorse*

The computerized spreadsheet can be an
immensely powerful tool. It is normally used
for financial accounting but it can be used to
build all sorts of computer models. It replaces
the old pencil, paper and calculator methods,
used by accountants for forecasting a
company's profits or research scientists inves-
tigating population growth. And. at domestic
level it can be used to keep track of personal
expenditure, or details relating to a hobby.

An accountant's traditional spreadsheet,
used for recording revenue and expenditure,
for instance, consists of a large sheet of paper,
usually taking up a double page spread. It is
divided horizontally into rows and vertically
into columns. This produces a grid of boxes
or 'cells'. Along the top the accountant usu-
ally enters the months of the year so that each
column refers to one month. Down the side of
the grid are headings such as revenue and
expenditure* For more detailed analysis he
may introduce sub-headings such as home

sales, exports, labour costs, raw material
costs, overheads and so-on. Each row then
refers to a specific area of revenue or
expenditure.

The final heading down the side of the grid
is usually Profit/Loss and the figures at the
end of each column show how much profit or
loss has been made each month. At the end of
each row, in the thirteenth column, the total
revenue or expenditure for each specific area
over the whole year is recorded.

Filling in the cells with figures is a labori-
ous task, whether or not a computer is used*
But accountants who use a paper spreadsheet
also face the laborious task of calculating the
Profit/Loss figures. This means adding up all
the revenue figures, all the expenditure fi-
gures and then subtracting total expenditure
from total revenue.

ENTER THE COMPUTER
In many respects, the computer spreadsheet is
just like the one used in the paper system,
with the same grid, divided into columns and
rows. In practice, to produce cells of a
reasonable size, only a small section of the
whole spreadsheet is displayed on the screen,
which can be used to 'window' the particular
area in which you are interested*

Once again, as in the paper version, you
can enter what you like into the blank cells,
which have no special meaning until you
define them. You can type in a label or
heading, or enter figures, depending upon
what you want the spreadsheet to display.

So far, the computerized spreadsheet is, if
anything, a little more cumbersome than a
sheet of paper* But its real power is the ability
to manipulate the information that you have
fed into it. Hidden under the blank spread-
sheet on which you make entries is another
spreadsheet* This one tells the computer what
to do with the information that it finds in each
cell* In fact, the 'hidden' spreadsheet is no
mystery, because you have also put this there,
and it is available to view or modify at any
time*

To go back to our struggling accountant,
let's say that he wants one column to display
an item's cost, the next to show a percentage
of tax payable on that sum, and the third

column to add the first two together. Using
the computer, he can program the computer
to do this on demand* All that's necessary is to
set up an instruction in each of the cells in
column two, telling the computer to multiply
the number in column one by a fixed percent-
age* A similar instruction in each of the cells
in column three will then get the computer to
calculate the required total, by adding the
contents of the relevant cells in the previous
columns.

FORECASTING THE FUTURE
Another problem for the accountant with his
large sheet of paper, is coping with changes.
An increase in labour costs, for instance,
would mean recalculating the total expendi-
ture figure and subtracting it again from the
total revenue figure to find the revised
Profit/Loss figure. If you are simply record-
ing figures the task is not so onerous but if you
are making forecasts for a year or more ahead
it could mean hundreds of recalculations.
This is the sort of job that's time consuming,
boring and prone to errors if carried out
manually, even with the aid of a calculator. A
computer can accomplish that sort of task in a
few milliseconds.

As long as you have entered the figures
correctly onto the spreadsheet—not always
the simple task it may sound!—a change to
one figure will automatically produce the
appropriate adjustments to all other related
figures*

If the figure in the raw material cost row is
changed, for instance, the total cost will be
adjusted accordingly and the necessary
changes made to the total revenue* This is the
simplest of all examples and some spread-
sheets are capable of carrying out enormously
complex calculations. This makes them very
useful for answering the 'What if . ..' ques-
tions which constantly need to be answered in
business—and in many other areas. Although
used mainly for business purposes, a
spreadsheet can also be used to predict, for
example, population changes* In fact, any
situation where there are many interdepend-
ent variable values is a suitable application for
a spreadsheet:

The power and versatility of spreadsheets

WHAT IS A SPREADSHEET?
ORGANIZING THE INFORMATION

WHAT TO USE IT FOR
COMPUTER CALCULATIONS
FORECASTING THE FUTURE

DESIGNING YOUR OWN SHEET
LABELLING THE

COLUMNS AND ROWS
FILLING IN THE CELLS

THE START OF THE PROGRAM

has led to them becoming the biggest selling
type of software. Many spreadsheets are
compatible with other software so that it is
possible to build up a complete library of
software with more serious uses. A word

processor, a database management system and
a spreadsheet would make up an enormously
versatile 'suite' of programs.

A TYPICAL SPREADSHEET
The basic unit of the spreadsheet is the cell.

The contents of each cell can either be a string
variable—a word, for instance—a number or a
formula. When the spreadsheet is loaded into
the computer the cells are a certain preset
width. On some spreadsheets this 'default'
can be changed, either at the outset or at a
later stage.

The value displayed in each cell can either
be a number that's been entered or the result
of a calculation* The number of rows and
columns will vary from spreadsheet to
spreadsheet but there are commonly 65
columns and 256 rows in the serious business
spreadsheets* That's 16640 individual cells—
a lot for any micro to handle! INPUT's
spreadsheet has 24 columns and between 20
and 30 rows depending on the computer*

The cells are always addressed and located
by letters or numbers along the x and y axes of
the grid on the sheet but exactly how varies
from spreadsheet to spreadsheet. Most use a
combination of letters and numbers with
columns labelled A, B, C . Z, and then AA,
AB, AC .*. AZ and so on for large spread-
sheets. The rows in such a case would be
numbered from 1 onwards. This is the
method used in the programs below.

Various commands are available to enter
equations, values or labels, to copy cells, or to
look at different parts of the sheet* Other
commands perform the calculations and allow
you to load and save the data* The equations
can cope with all the usual mathematical
operations—plus, minus, multiply and
divide—as well as percentages and the total in
any row or column* The cursor is normally
used to move around the spreadsheet* The
cursor highlights a whole cell at a time and
this cell becomes the 'active' cell. It is the one
which you are now working on and which will
be directly affected by your instructions to the
computer* This is how the Spectrum works.
The other computers use a different method
where each cell is specified first and its
contents entered at the bottom of the screen
before being transferred to the correct po-
sition on the sheet.

PLANNING AND DESIGN
The first stage of using a spreadsheet is one of
the most difficult, often requires a great deal
of planning and doesn't involve the use of the
computer! Before you start you must decide
exactly what you want the computer to do,
because this will affect how you design your
spreadsheet* A properly planned spreadsheet
is an ideal method of displaying information
clearly and concisely* But, as is so often the
case in computing, your spreadsheet will only
be as good as you make it* A sloppy approach
to the task will lead to an untidy, muddled
spreadsheet, difficult to read, hiding inform-
ation rather than revealing it.

As a practical example, let's say you want
to design a spreadsheet to help with domestic
finance over the year. This will obviously use
the months of the year as the title of each
column along the top of the sheet. But

deciding what the title of each row will be is
more difficult*

First of all, how detailed do you want it to
be? Mortgage, Rates, Fuel, House/Contents,
Insurance and Maintenance are obvious titles
referring to your house. But do you want to
treat expenditure on home improvements as
an independent category? Or do you want to
include the running costs of the car—Petrol,
Tax, Insurance, Service, Repairs—in a joint
category and call it something like General
Expenditure* It really depends on how much
detailed information you want.

A spreadsheet can be particularly useful for
keeping track of the value of your assets, such
as car and house. You ought to be able to find
out by what sort of percentage your house is
appreciating and your car is depreciating in
value*

Working out the annual increase in the
value of your house looks quite simple initi-
ally. One year after you have bought it the
value will be the price you paid for it
mulitplied by the annual percentage increase
in value—P*X%—where X is the percentage
increase plus 100* For example, X would be
100*5% for annual increase of •5%* The
formula to work out the value in the second
year is P*X%*X%. In the third year the
formula gets even longer and by the end of ten
year's it's impossible to handle*

With a spreadsheet there is an easier way.
Thankfully you do not need to be a mathema-
tician, familiar with dozens of mathematical
formulae, to be able to use the spreadsheet to

its full potential* In a case like this you can
usually use the address of one cell to refer to
the contents of that cell* In this instance the
formula gets no more complicated than
P*X% where P is the contents of the previous
cell* In the formula you would be writing for
the spreadsheet, P would actually be the
address of the previous cell and might look
something like BlO*100.5%*

If the formula is entered in cell C10 the
answer is displayed in that cell. Entering the
formula C1O*100*5% in D10 tells the com-
puter to take the number displayed in C10
and multiply it by 100*5%* The actual form
the equations have to take varies from
spreadsheet to spreadsheet and the programs
below use a rather different method. How-
ever, the exact details will all be explained in
the instructions on how to use the program
that will be coming later*

Using the address of each cell instead of the
contents of that cell makes working with a
spreadsheet very easy* It enables almost any-
one to carry out very complicated mathemat-
ical tasks with the aid of a little bit of common
sense and patience* Care must be taken when
referring from one cell to another, however*
You must not, for example, use cell B 10 in a
formula in C10 while the formula in B10
depends on the result obtained in C10! The
computer cannot work out the result of either
one until it has solved the other!

If the spreadsheet failed to take account of
this then the program would crash as the
computer attempted to resolve the paradox*

WHAT IF... ?
Your domestic budget spreadsheet will enable
you to answer all sorts of 'What if .
questions. What if the mortgage rate rises by
2% in June? What if we buy a bigger car?

In fact, the last example points to another
area where spreadsheets can be used other
than for financial forecasting and budgeting.
The difference between central heating sy-
stems using different fuels can be illustrated
at a glance. As long as you can estimate how
much heat loss you would prevent by using
double glazing you could work out the how
much you would save and how long it would
take to recover the cost of installation.

Although even the simplest spreadsheet

can be used for quite complicated serious
applications, spreadsheets can also be fun.
Models other than the usual financial models
can be built* At the simplest level, and just for
fun, it is possible to create a circular reference
through cells which will carry on forever*

There are enormous variations from
spreadsheet to spreadsheet. As a general rule
the more powerful the spreadsheet, the more
expensive it will be, and the bigger the micro
needed to run it. A small spreadsheet might
have half a dozen commands and a similar
number of functions. Compare that with
Multiplan's 20 main commands and 40 func-
tions. With sophisticated spreadsheets it is
possible to introduce statements with a func-

tion similar to some Basic commands such as
IF .** THEN, AND, OR and NOT. In other words
it is possible to program the spreadsheet.

ENTERING THE PROGRAM
The spreadsheet program is quite long, so it is
given in three parts* Enter the lines given
below now, and save them so the remaining
lines can be added later* Instructions on how
to use the program will also be given with the
following two parts.

Each A, B and C should be entered in
graphics mode*

5 BORDER 0: PAPER 0: INK 7: CLS
10 DIM b$(11): DIM s$(8): DIM

d$(30,24,18): DIM v(4): DIM z$(5,4)
20 GOSUB 1730: POKE 23658,8: LET

t$="VAL": LET os= 0: LET sflag = 0: LET
wx =1: LET wy= 1: LET cx =1: LET cy=1

30 CLS: PRINT "E ❑ 1=1 CIADOODE
❑❑❑ A ❑❑❑❑❑❑❑❑ A❑❑❑
ODD DA": FOR x=4 TO 32 STEP
9: FOR y=2 TO 21 STEP 2:PRINT AT y,x;
"A": NEXT y: NEXT x: FOR y=1 TO 21
STEP 2: PRINT AT y,0;"BBBBCBBBBBBBB
CBBBBBBBBCBBBBBBBBC": NEXT y

40 FOR X=0 TO 2: PRINT AT
0,9*x +9;CHR$ (wx + x + 64): NEXT x

50 FOR x=0 TO 9: PRINT AT
(x +1)*2,1;("D" AND
wy+x<10);wy+x: NEXT x

60 PRINT AT 0,04;" ❑ ": F0R y = 0 T0 9:
FOR x=0 TO 2: GOSUB 1230: NEXT x:
NEXT y: PRINT # 1;AT 0,0;"1=101=11=11=1
❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑
❑❑❑❑❑❑❑❑❑❑❑ "

70 PRINT AT cr2,((cx — 1)*9) + 5; BRIG HT 1;
FLASH 8; PAPER 8; INK 8; OVER 1;" ❑ "

80 IF INKEY$=`" AND wy >1 THEN LET
wy= wy —1 0: GOTO 40

90 IF INKEY$="&" AND wy<20 THEN LET
wy = wy + 10: GOTO 40

100 IF INKEY$="(" AND wx <21 THEN LET
wx=wx +3: GOTO 40

110 IF INKEY$="%" AND wx>1 THEN LET
wx = wx — 3: GOTO 40

120 PRINT AT cr2,((cx —1) * 9) + 5; FLASH 8;
BRIGHT 0; INK 8; PAPER 8; OVER 1;" ❑ "

130 LET cy= cy (1NKEY$="6" AND
cy<10)—(1NKEY$="7" AND cy>1):
LET cx=cx+ (1NKEY$ = "8" AND
cx <3) — (1NKEY$= "5" AND cx >1)

140 IF INKEY$="i" OR INKEY$="I" THEN
GOSUB 1250

150 IF INKEY$="v" OR INKEY$="V" THEN
LET t$="VAL": GOTO 60

160 IF INKEY$="e" OR INKEY$="E" THEN
LET t$="EQU": GOTO 60

170 IF INKEY$ ="?" THEN PRINT AT 0,0:

FLASH 1;"CALC": GOSUB 810: GOTO 60
180 IF INKEY$="z" OR INKEY$="Z" THEN

PRINT AT 0,0; FLASH 1;"COPY": GOSUB
230: GOTO 60

190 IF INKEY$="P" OR INKEY$="p" THEN
COPY

200 IF INKEY$="NOT ❑ " THEN GOSUB
1780: GOTO 30

210 IF INKEY$="—" THEN GOSUB 1840:
GOTO 30

220 GOTO 70
230 PRINT #1;AT 0,0;"CELL TO COPY ? ":

LET d =1: LET c = 3: LET x=15: GOSUB
580: GOSUB 670: IF f THEN BEEP .2,30:
GOTO 230

240 PRINT # 1;AT 0,0;"ABS OR REL (A OR
R)? ": LET x=22: LET d = 2: LET c =1:
GOSUB 580: GOSUB 670: IF f THEN BEEP
.2,30: GOTO 240

250 PRINT #1;AT 0,0;"COL OR ROW (C OR
R)? ": LET x=22: LET d =3: LET c =1:
GOSUB 580: GOSUB 670: IF f THEN BEEP
.2,30: GOTO 250

260 PRINT # 1;AT 0,0;"FROM CELL NO ?":
LET x=16: LET d =4: LET c =3: GOSUB
580: GOSUB 670: IF f THEN BEEP .2,30:
GOTO 260

270 PRINT # 1;AT 0,0;"TO CELL NO ? ": LET
x=14: LET d =5: LET c = 3: GOSUB 580:
GOSUB 670: IF f THEN BEEP .2,30: GOTO
270

280 GOSUB 770: IF NOT f THEN GOTO 320
290 PRINT #1;AT 0,0;"COMMAND ERROR

:PRESS A TO ABORT OR ANY OTHER KEY
TO RE-ENTER"

300 PAUSE 10: PAUSE 0: PRINT # 1;AT
0,0;" ❑❑❑❑ EEDEEDEED
DE ❑❑❑❑ O ❑ EDEEDED
EID ❑ D ❑❑❑ D ❑❑❑❑ E ❑❑
DODO ❑ DEEEDEEEDD
LIDDED": IF INKEY$="a"OR
INKEY$="A"THEN RETURN

310 GOTO 230
320 LET a = (CODE z$(1,2)) — 64: LET

b = VAL z$(1,3 TO (VAL z$(1,1)+1)): LET
s$=(d$(b,a,9 TO 16) AND
t$="EQU")+ (d$(b,a, TO 8) AND
t$="VAL"): LET c$=d$(b,a,17): LET
z = CODE d$(b,a,18)

330 IF z$(2,2)="R" AND T$="EQU" AND
C$ ="1" THEN GOT0 390

340 FOR a =fc TO tc: FOR b=fr TO tr
350 IF t$="EQU" THEN LET d$(b,a,9 TO

16) =s$: LET d$(b,a,17)=c$: LET

d$(b,a,18) = CHR$z
360 IF t$="VAL" THEN LET d$(b,a, TO

8) = s$
370 NEXT b: NEXT a
380 RETURN
390 LET s$=d$(b,a,9 TO 16): GOSUB 890:

LET a = (CODE z$(4,2) — 64) — (CODE
z$(1,2) —64): LET b =VAL z$(4,3 TO (VAL
z$(4,1) + 1)) —VAL z$(1,3 TO (VAL
z$(1,1) +1))

400 LET v(2) = v(2) + b-1: LET
v(4) =v(4) + ((b —1) AND v(3) < >26)

410 LET v(3) = v(3) + ((a-1) AND
v(3) < >26): LET v(1) =v(1) +a —1

412 IF z$(3,2)="C" THEN LET
v(1)=v(1)+1: LET
v(3)= v(3) + (v(3) < >26)

414 IF z$(3,2)="R" THEN LET
v(2) =v(2) +1: LET
v(4)=v(4) + (v(4) < >26)

10 POKE 53280,4:POKE 53281,0
20 PRINT"CIL Al"SPC(16)".2

WORKINGg"CHR$(8)
30 RM =20:CM =26:LM =15
40 DIM D$(RM,CM)
50 A$=CHR$(128)+" ❑❑❑❑❑❑❑

01111110 171171":AA$= A$:BB$ =
A$: F$ = A$

60 FOR R=1 TO RM
70 FOR C=1 TO CM
80 D$(R,C) =A$: NEXT C,R
90 GOSUB 1640
100 C$="klii g 0" +CHR$(133)+

CHR$(137)+CHR$(134)+CHR$(138)+
CHR$(135) + CHR$(139)

110 DIM CL(3):CL(0) = 5
:CL(1) = 30:CL(2) =158:CL(3) =159

120 OP$ = " + -7%$&"
130 RS =1:CS =1:TP = 0
140 GOSUB 210
150 IFQ<10 THEN 140
160 GOSUB 1560
170 PRINT"DO YOU WANT TO EXIT

PROGRAM (YIN)?"
180 AA$="Y":BB$="N":GOSUB1280
190 IF A$="N" THFN 140

200 POKE 53280,14:POKE 53281,6:PRINT
"00":END

210 FOR Z = 0T0159:POKE 1864+Z,32:
NEXT Z

220 PRINT1§1a112E1E1";
230 FOR N =CS TO CS+ 3
240 PRINT"EIBBEI";CHR$(64+N);

"881213";
250 NEXT N:PRINT"D";
260 FOR R = RS TO RS+ LM -1
270 AA$=STR$(R):IF LEN(AA$) <3 THEN

AA$ = "CI" +AA$
280 PRINT"awc"RIGHT$(AA$,2);:N =0
290 FOR C = CS TO CS +3
300 PRINT "10:1M"CHR$(CL(N));
310 IF TP=0 THENPRINT RIGHT$(D$(R,C),

8);
320 IF TP=8 THEN PRINT LEFT$(D$(R,C),8);
330 IF ASC(D$(R,C)) =128 AND TP=8

THEN PRINT "E";
340 N=N+1:NEXT C
350 PRINT "am W";:NEXT R
360 POKE 198,0:PRINT"a EIBEI B

131288913131111312899
131280128131313131313E1
888888880";

370 PRINT"allICURSOR KEYS TO MOVEIDI:";
380 IF TP=8 THEN

PRINT"Illg ❑ ID FORMULA MODEIDI 0";
390 IF TP=0 THEN

PRINT" ❑ ❑VARIABLES MODED Ill";
400 PRINT"a 11111111111I<F1> ❑ SWAP

MODEDD171:71< F2 > ❑ ALTER CELL
❑ ❑ ";

410 PRINT"a ❑❑❑❑ <F3> ❑ COPY
CELL111111111:111<F4> IDICALCULATED
❑ E";

420 PRINT"a1111111 	<F5> ❑ LARGE
MOVE ❑❑ : ❑ < F6> ❑ TO EXITD
❑ EIMM":PRINT"0";

430 PRINT" * ";:GET Q2$:PRINTCHR$(20);:IF
Q2$="" THEN 430

440 Q1$=C$:GOSUB 2670
450 IF Q=0 THEN 430
460 IF Q=1 THEN CS=CS+ 1:IF

CS> CM -3 THEN CS = CM -3
470 IF Q=2 THEN CS=CS-1:IF CS<1

THEN CS = 1
480 IF Q=3 THEN RS=RS-1:IF RS<1

THEN RS=1
490 IF Q=4 THEN RS=RS+1:IF

RS> RM -LM+1 THEN
RS= RM - LM +1

500 IF Q=5 THEN GOSUB560:RETURN
510 IF Q=6 THEN GOSUB680:RETURN
520 IF Q=7 THEN GOSUB1720:RETURN
530 IF Q=8 THEN GOSUB1080:RETURN
540 IF Q=9 THEN GOSUB2590:RETURN
550 RETURN
560 IF TP=0 THEN TP=8:RETURN
570 IF TP=8 THEN TP=0
580 RETURN
590 PRINT"WHICH CELLII?";
600 GET A$:IF A$="" THEN 600
610 IF A$="4-" THEN RETURN
620 C = ASC(A$) - 64
630 IF C<1 OR C>26 THEN 600
640 PRINT "111"A$
650 INPUT R
660 IF R<1 OR R>20 THEN

PRINT" ❑ ";:GOTO 650
670 RETURN
680 GOSUB 590:IF A$="4—" THEN RETURN
690 PRINT"ENTRYPJ";
700 A$="":1NPUT A$
710 IF TP=8 THEN GOSUB 1040:GOSUB

750:D$(R,C) = A$ + RIGHT$(D$(R,C),8)
720 IF TP=0 THEN GOSUB 750:D$(R,C) =

LEFT$(D$(R,C),8) +A$
730 IF LEFT$(D$(R,C),1)=CHR$(128) THEN

D$(R,C) = " D" + RIG HT$(D$(R,C),15)
740 RETURN
750 IFLEN(A$)>8THENA$=LEFT$(A$,8)
760 IF TP=8 AND LEN(A$) <8 THEN

A$=A$+" ❑ ":GOTO 760
770 IF TP=0 AND LEN(A$) <8 THEN

A$=" ❑ "+A$:GOTO 770
780 RETURN
790 AA$=MID$(A$,PS,3)
800 BB$= LEFT$(A$,1)
810 IF BB$<"A" OR BB$>"W" THEN

D1 = 0:RETURN
820 P=VAL(RIGHT$(AA$,2))
830 D1 =2:IF P<10 THEN D1 =1
840 IF P>CM OR P<1 THEN D1 =0
850 RETURN

10 MODE7:*FX4,1
20 ON ERROR GOTO 3060
30 *FX225,140
40 Rows = 20:CoIs =24:Length =15
50 DIM D$(Rows,Cols)
60 A$= CHR$128 + STRING$(15,"E"):

a$= A$: b$ =A$:F$ =A$
70 FOR r%=1 TO Rows
80 FOR c%=1 TO Cols
90 D$(r%,c%)=A$
100 NEXT,
110 PROCload
120 FOR n=136 TO 144:C$=C$+CHR$n:

NEXT
130 C$=C$+CHR$9
140 DIM CI(3):CI(0) =129:CI(1) =131:CI

(2)=133:C1(3)=134
150 Op$ =" + —*/%$&"
160 Rowstart =1:Colstart =1:Type = 0
170 REPEAT
180 PROCmainscreen:PROCkey
190 UNTIL K%=10
200 *FX4,0
210 PROCsave
220 PRINT"'"DO YOU WANT TO FINISH

?(Y/N)"
230 A$=GET$:IF A$="Y" OR A$="y"

THEN CLS:PRINTTAB(13,10)"Goodbye"
"':END

235 *FX4,1
240 GOT0170
250 DEF PROCmainscreen
260 LOCAL r,c,a$,n

270 CLS:PRINT" ❑ ODD";
280 FOR n = Colstart TO Colston + 3
290 PRINT". . . .";CH R$(64 + 	0";
300 NEXT
310 PRINT
320 FOR r = Rowstart TO Rowstart + Length-1
330 a$ STR$(r):IF LENa$ < 2 a$=a$

+ " 0"
340 PRINTa$;".";:n = 0
350 FOR c Colston TO Colston+ 3
360 PRINTCHR$(CI(n));
370 IF Type= 0 PRINTRIGHT$(D$(r,c),8);

380 IF Type = 8 PRINTLEFT$(D$(r,c),8);
390 n=n+1
400 NEXT
410 PRINT
420 NEXT
430 ENDPROC
440 DEF PROCflash(row,col)
450 IF row < Rowstart OR

row> Rowstart+ Length ❑ ENDPROC
460 IF col <Colston OR col > Colstart + 3

ENDPROC
470 PRINTTAB((col — Colstart) * 9 +3,

row — Rowstart+2)CHR$135;
480 ENDPROC
490 DEF PROCkey
500 LOCALa$,b%
510 PRINTTAB(0,Length+3);"Cursor Keys to

move : <f4> Large move"
520 PRINT" < f0 > Swap Mode : <f1 > Alter

cell"
530 PRINT" <f2> Copy cell : <f3>

Calculate"
540 PRINT" <TAB> to

exit ❑ ❑ : ❑ ";CHR$129;
550 IF Type=8 PRINT"FORMULA MODE"

ELSE PRINT"VARIABLES MODE"

560 REPEAT
570 *FX15,0
580 a$=GET$:K%=INSTR(C$,a$):UNTIL

K% > 0
590 IF K%=1 Colston= Colstart+1:IF

Colston > Cols — 3 Colstart = Cols-3
600 IF K%= 2 Colston= Colstart-1:IF

Colstart =0 Colstart =1
610 IF K%=3 Rowstart= Rowstart —1:IF

Rowstart <1 Rowstart =1
620 IF K%=4 Rowstart= Rowstart +1:IF

Rowstart> Rows — Length +1 Rowstart =
Rows — Length +1

630 IF K%=5 PROCswap
640 IF K%=6 PROCalter
650 IF K%=7 PROCreplicate
660 IF K%=8 PROCcalculate
670 IF K%=9 PROCwindowstart
680 ENDPROC
690 DEF PROCswap
700 IF Type= 0 Type = 8:ENDPROC
710 IF Type=8 Type= 0:ENDPROC
720 DEF PROCcellin(vpos)
730 REPEAT
740 INPUTTAB (0,vpos)SPC(30)TAB(0,vpos)

"Which cell ❑ "A$

750 Col = ASC(A$) —64:Row= VAL(MID$
(A$,2))

760 UNTIL (Row> =Rowstart AND
Row < Rowstart + Length) AND (Col> =
Colstart AND Col< Colston +4)

770 PROCflash(Row,Col)
780 ENDPROC
790 DEF PROCalter
800 LOCAL vpos
810 vpos =VPOS
820 PROCcellin(vpos)
830 INPUT TAB(14,vpos)"171 EntryLl"A$
840 IF Type=8 PROCformulacheck:D$(Row,

Col)=FNformat+ RIGHT$(D$(Row,Col),8)
850 IF Type =0 D$(Row,Col)=LEFT$(D$

(Row,Col),8) + FNformat:IF LEFT$(D$
(Row,Col),1) = CHR$128 D$(Row,Col) =
" LI " + RIGHT$(D$(Row,Col),15)

860 ENDPROC

!HI
10 PMODE0,1:PCLEAR1:CLEAR 10000:CLS:

PRINT@230,"SPREADSHEET PROGRAM"
20 CS=1:RS=1:CR=1:CC=1:MO$(0)=

"VALUE (CALC)":M0$(1)
= "EQUATION ❑ ❑ ❑ ❑ ":MO =1:0P$ =

"+ — */%$&"
30 DIM D$(26,30),D(26,30)
40 FOR 1=1 TO 26:FOR J=1 TO

30:D$(I,J) = CHR$(128):NEXT J,I
50 CX=4:RX =1
60 GOSUB 70:GOTO 170
70 PRINT@448,"WAIT":PRINT@0,STRING$

(3,128);:FOR I=CS TO CS + 3:PRINT
CHR$(123);CHR$(128);CHR$(128);CHR$
(96 +1);CHR$(128);CHR$(128);CHR$
(125);:NEXT:PRINTCHR$(128);

80 PRINT@480,"MODE: ❑ ";MO$(M0);
90 FOR 1=0 TO 11:C1 = INT((RS + I)/

10) +48:C2= (RS + I) — ((C1 —48)1 0) +
48:POKE 1024+ 32*1+ 32,C1: POKE
1024+32*1+ 33,C2:PRINT@
321 + 34,`"':NEXT

100 PRINT@416:IF MO=0 THEN GOSUB
740:GOTO 130

110 FOR J =RS TO RS+11:FOR I=CS TO
CS +3

120 PRINT@(J — RS) * 32 + 35 + (1— CS)*7,
"";:GOSUB 660:NEXT I,J

130 PRINT@480,"MODE:111";MO$(M0);TAB
(20);"CELL: ❑ ";CH R$(64 + CC);MID$
(STR$(CR),2);"171";

140 PRINT@448,"READY"
150 PRINT@458,MID$(D$(CC,CR),2)
160 RETURN
170 PS= (CR — RS +1)12+ (CC—CS)

*7+3+1024:Z= PEEK(PS):POKE PS,191
ANDZ

180 I$=INKEY$:IF 1$="" THEN 180
190 POKE PS,Z
200 IF 1$= CHR$(8) AND CC>1 THEN

CC=CC-1:IF CC<CS THEN
CS = CS —1: GOSUB 70

210 IF I$=CHR$(9) AND CC <26 THEN
CC=CC+1:IF CC>CS+3 THEN
CS= CS +1:GOSUB 70

220 IF 1$= CHR$(10) AND CR <30 THEN
CR=CR+1:IF CR>RS+11 THEN
RS = RS +1:GOSUB 70

230 IF 1$ = CHR$(94) AND CR >1 THEN
CR=CR-1:IF CR<RS THEN
RS = RS — 1:GOSUB 70

240 IF 1$= G" GOSUB 330
250 IF 1$= "Q" THEN CLS:INPUT "ARE YOU

SURE YOU WANT TO QUITIll
(YIN)"; A$:IF A$< >"Y" THEN GOSUB
70 ELSE CLS:END

260 IF 1$ ="I" GOSUB 410

270 IF 1$="V" THEN MO = 0:GOSUB 70
280 IF 1$= "C" G0SUB 1490
290 IF 1$ = "E" THEN MO=1:GOSUB 70
300 IF 1$="S" GOSUB 1230
310 IF 1$="L" GOSUB 1350
320 G0SUB 130:GOTO 170
330 PRINT@448:PRINT@448,"GOTO

CELL >";:LINE INPUT A$
340 IF A$="" THEN RETURN
350 C1 =ASC(A$) — 64: IF C1 <1 OR

C1 > 26 THEN 330
360 C2=VAL (MID$(A$,2)):IF C2<1 OR

C2>30 THEN 330
370 CC = C1:CS = C1:CR = C2:RS = C2
380 IF CS > 23 THEN CS = 23
390 IF RS>19 THEN RS=19
400 GOSUB 70:RETURN
410 PRINT@448,"ENTER NEW

CONTENTS:";:LINE INPUT A$
420 IF A$="" THEN A$=CHR$(128):GOTO

610
430 IF LEN(A$)> 9 THEN

PRINT@448,"INVALID ENTRY":S0UND
1,4:GOTO 410

440 IF VAL(A$) < >0 THEN 560
450 B$= LEFT$(A$,1):IF B$ <"A" OR

B$>"Z" THEN 600
460 C$= MID$(A$,2,2)

470 IF VAL(C$) <1 OR VAL(C$) > 30 THEN
600

480 IF VAL(C$) <10 THEN A$= B$+STR$
(VAL(C$)) + MID$(A$,3)

490 D$=MID$(A$,4,1):IF D$<"A" OR
D$> "Z" THEN 600

500 E$=MID$(A$,5)
510 IF VAL(E$) <1 OR VAL (E$)>30 THEN

600
520 IF VAL(E$) <10 THEN A$=

LEFT$(A$,4)+STR$(VAL(E$))+ MID$
(A$,6)

530 0$= MID$(A$,7,1):IF INSTR(1,
OP$,O$)= 00R0$="" THEN 600

540 DP =VAL(RIGHT$(A$,1)):IF DP <0 OR
DP > 7 THEN 600

550 PRINT@448,"ENTRY IS AN equation":
A$=CHR$(131)+A$:GOTO 610

560 PRINT@448,"ENTRY IS A value"
570 IF RIGHT$(A$,1)=" ❑ " THEN A$=

LEFT$(ACLEN(A$)-1):GOTO 570
580 IF LEN(A$) <7 THEN A$=" ❑ "+A$:

GOT0580
590 A$=CHR$(129)+A$:GOTO 610
600 PRINT@448,"ENTRY IS A label":

A$=CHR$(130)+A$
610 D$(CC,CR) -=A$:1= CC:J =CR:PRINT@

(J — RS)12 + 35 + (I — CS)*7, — ;:GOSUB
660:SOU ND190,2: FORD = 1T0500:NEXT

620 IF CC> CX THEN CX = CC
630 IF CR> RX THEN RX = CR
640 IF MO=0 THEN MO=1:GOSUB 70
650 RETURN

The 'CLIFFHANGER' listings published in this
magazine and subsequent parts bear absolutely no
resemblance to, and are in no way associated with,
the computer game called 'CLIFF HANGER' re-
leased for the Commodore 64 and published by
New Generation Software Limited.

Getting everything into the right
place at the right time is one of the
most complicated parts of game
construction. Here are the routines
to get things happening in sync

Each time a game of Cliffhanger begins, it is
not just the score that has to be set. You also
have to tell other routines how you want them
to start off. You have to drain the sea back to
the bottom of the screen, tell the cloud which
way the wind is blowing, make Willie stand

still on the starting line and set various delays
so that everything happens in the correct
sequence on the screen.

a
The following routine sets a series of variables
to the values they need to carry when Willie
starts out on his hazardous task:

ORG 58606
DTH Id a,6

Id (57353),a
Id h1,736

Id (57336),a
Id h1,223
Id (57356),hI
Id a,0
Id b,5
Id (57350),a
add a,b
Id (57351),a
add a,b
Id (57352),a

This routine is labelled dth because it is called
not just at the beginning of the game, but after

Id (57354),hI
Id h1,130
Id (57345),hI
Id a,3

Id (57347),a
Id a,0
Id (57348),a
Id a,2
Id (57349),a
Id h1,449
Id (57332),hI
Id h1,0
Id (57334),hI
Id a,0

Willie's death too. It sets the game
up again fo out*other go.

SETTING THE SEA
There is a great advantage in having all your
variables together in one place. It allows you
to check exactly what state the game is in at
any time while you are debugging it.

One-byte variables are set via the eight-bit
accumulator while two-byte variables are set
via the 16-bit HL register pair, even if the
amount being loaded at this stage can be
contained in one byte. This is because the
high bytes of the variable must be set too.

Memory location 57,353 contains the sea
delay. This is loaded with 6 to give Willie a
reasonable chance to scale the cliff before he
gets drowned. Later the delay can be changed
to speed up the onrush of the sea and make the
game more difficult and more exciting.

The sea must also start at the bottom of the
screen at the beginning of each screen. The
screen position of the left-hand end of the top
of the sea is stored in 57,354 and 57,355. The
number 736 is loaded in there which is the
screen position at the bottom left-hand corner
of the screen.

CLOUDING THE ISSUE
In the Spectrum version of Cliffhanger the
cloud moves about. Memory location 57,345
is its screen position and this is loaded with
130, the position it should start from.

But that's not all the game needs to know
about the cloud. It needs a delay so that the
cloud does not zoom around like an aircraft.
The delay variable is stored in 57,347 and this
is loaded with 3 to set it.

The cloud also needs to know which
direction it is travelling in. Th

cloud*

ormation
is stored in 57,348. A 0 in this location means
that the

aircraft*

 moving to the right. A 1
means that it is moving to the left. Here you
initialize the routine by storing 0 in this
location, sending the cloud to the right.

FLY, STAND, DIE
The gull delay is stored in 57,349 and this is
set to 2. Willie's screen position is given by
the contents of 57,332, so this is loaded with
449 which is the screen position of the bottom
left-hand end of the slope.

Another variable controls whether Willie is
standing still, running or jumping. For rea-
sons you will see later, this is stored in two
bytes, 57,334 and 57,335. Willie starts off
standing still, so these locations are set to 0.

The general condition of the game is
monitored by the so-called die

jumping* in

57,336. A 0 here means that Willie is okay. A
1 means that he has reached his reward and

the next game screen has to be called up.
And a 2 me

0*

s that he is dead! When the
game starts Willie is fine, so 0 is loaded
into this byte.

BOULDERS AND BOAS
The variable c

okay*

lling the position
of the boulder is stored in 57,356. And
this is set to 223, the screen position of
the slope's top right-hand end.

The three snakes have tongues that flick in
and out. But you don't want them all

to flick in and out together, so they
f have to be staggered. It's done by

loading a delay into the delay
variables, in 57,350, 57,351, 57,352.

A is loaded with 0 and B with the stagger,
5* The 0 is stored in the first snake's delay
variable. The 5 in B is added to the 0 in A and
the result, 5, is stored in the second snake's
delay variable. Another 5 from B is added to
that 5 and the result, 10, is stored in the third
snake's delay variable*

At the beginning of each game, the boul-
der must be returned to the top of the slope.
The following routine does that:

ORG 22608
LDA # 56
STA $D002
LDA $D010
ORA #2
STA $D010
LDA #81

ROCK ON
The boulder is sprite one and its X and Y
coordinates are held in memory locations
$D002 and $D003 on the Vic chip* But
because the Commodore's screen is 320
screen positions wide— and only numbers up
to 255 can be accommodated in one memory
location—a further memory location must be
used to hold the most significant bit. The
MSB register is memory location $D003*

The boulder starts its roll from X position
312 and Y position 81. So 56 is loaded into the
accumulator and stored in memory location
$D002. And the MSB register at $D003 is set
by ORing its contents with 2. Then the
accumulator is loaded with 81 which is stored
in memory location $D002*

But that is not the end of the story. It is no
good having the boulder leaping from one
screen position to the next. Convincing anim-
ation depends on smooth action. And to
achieve that, the boulder must be moved half
a screen position at a time*

Within this program the half position
movement is done by using what are known as
double density coordinates* How these work
will be seen in a later part of Cliffhanger when
you come to move the boulder. For now
through hough you have to set the double
density X coordinate to 72 and the double
density Y coordinate to 13. These are stored
in memory locations $C008 and $C009 in the
game's variable table and initialize the boul-
der sprite to its start position*

CLOUDS
The cloud must be set to its correct start
position too, and it must start off travelling in
the right direction:

0RG 24912
LDA #1
STA $C0013
LDA # 50

WHICH WAY BLOWS THE WIND?
Memory location $C00B in the variable table
is used as a flag to tell the cloud which way the
wind is blowing* A 0 means that the wind is
blowing from east to west and the cloud is
travelling to the left and a 1 means that the
wind is blowing west to east and the cloud is
moving to the right* To start off with the
cloud should move to the right, so 1 is loaded
into the accumulator and stored in 49,163.

The cloud is sprite number two, whose X
and Y coordinates are stored in memory
locations $D004 and $D005* The initial
cloud position is X = 50 and Y = 70. So 50 is
loaded into the accumulator and stored in

$D004* And 70 is loaded into the ac-
cumulator and stored in $D005*

The cloud is not going to move to any
position further right than 255, so the MSB
register does not have to be set.

This program sets up all the variables in the
zero page at the beginning of each game*
And it resets all of them—with the exception
of the score and the lives left—at the begin-
ning of each screen. Don't forget to set
PAGE = &3000 and type NEW and *TAPE
before you key it in.

110 DATA0,0,1,38
120 DATA46,20,14,0
130 DATA0,0,0,4
140 DATA0,0,0,10
150 DATA0,10,0,0
160 DATA5,0,0,0
170 DATA0,0,0
180 FORA% = &1 D5CTO &1 D76: R EA D?A%:

N EXT
190 FOR PASS = 0TO3STEP3
220 P% = &1D77
230 [OPTPASS
240 *!nit
250 LDX # 0
260 .Lb1
270 LDA&1 D5C,X
280 STA&75,X
290 I NX
300 CPX # 27
310 BNELb1
320 JSR&1BA3
330 RTS
340]
430 DATA0,0,1,38
440 DATA46,20,14,0
450 DATA0,0,0,4
460 DATA0,0,255,255
470 DATA0,10,0,0
480 I FPASS = 0

THEN FORA% =
&1 D87T0&1 D9A:
R EAD?A%:N EXT

520 P% = &1D9B

You will notice that this routine jumps a
couple of other subroutines that have not
been published so far* So if you call it, it will
crash*

The way to get round this is to POKE RTSs
(96) into the start addresses of the subroutines
it jumps to after you have *SAVED the machine
code and assembly language* This will send
the processor back straight away*

The locations in question are &1BA3 and
&1CCB* POKE these with 96 which is the code
for RTS*

STA $D003
LDA # 72
STA $C008
LDA # 13
STA $C009
RTS

STA $D004
LDA #70
STA $D005
RTS

530 [OPTPASS
540 .InitSc
550 JSR&1B32
560 LDX # 0
570 .Lb2
580 LDA&1 D87,X
590 CM P # 255
600 BEQLb3
610 STA&75,X
620 .Lb3
630 INX
640 CPX # 20
650 BNELb2
660 LDY # 0
670 *Lb4
680 LDA # 1
690 STA&77
700 JSR&1 CCB
710 INY
720 CPY # 8
730 BNELb4
740 RTS
750]NEXT

When you have done that, and have the rest
of the game in memory, call the routine with
this instruction:

CALL &1D77

Nothing should happen. In fact, all the
routine at that address does is to set up the
variables, so you'll see no effect on the screen.
To find out whether it has worked or not, try:

CALL &1D9B

But before that you must put RTSs (96) in at
memory locations &IAZE and &IA3C. This
should print up the first screen with the score
set to zero, the lives to five and the level to 1
which is a screen with potholes.

NEW GAME
The DATA in Lines 110 to 170 is the initializ-
ation values of all the variables in the game.
When the program is RUN, the BASIC in-
structions in Line 180 POKE it into an init-
ialization table at &1D5C to &1D76. The
following machine code routine picks those
initialization values up one at a time from the
initialization table and copies them into the
variables table.

It may seem unnecessary to have this data
in more than one place. But when this
program has been RUN and the BASIC is
removed, the initialization table will be the
only constant source of reference for these
initialization values. The values of the vari-
ables in the variables table are updated
throughout the game and the only way to set
them back to what they were at the beginning
is to copy their values out of the initialization
table again. The machine-code program does
this.

LDX # 0 sets the offset in the X register to
0 and LDA &1 D5C,X loads the first byte of the
initialization table into the accumulator. STA
&75,X stores it, in the first location of the
variables table. Xis then incremented to move
the LDA instruction onto the next byte of the
initialization table and the STA instruction
onto the next location in the variables table.

The processor goes round and round the
l.b1 loop, loading up the next byte of the
initialization table and storing it in the next
location in the variables table until all 27 of
the variables have been initialized. When X
has clocked up to 27, the CPX # 27 instruction
sets the zero flag, the condition of the BNE
instruction is no longer fulfilled and the
processor drops out of the loop.

The routine then sends the processor to the
subroutine at &1BA3. This routine sets the
sound envelope to make the tune and the

. sound effects quiet. But it is not in position at
the moment and this is one of the locations
that you should have POKEd an RTS.

When the processor returns, it hits another
RTS in this program and returns to the place
this routine was called from.

NEW SCREEN
The DATA in Lines 430 to 470 is the data
required to reinitialize a new screen. This
DATA is READ into a second table at & 1 D87 to
&1D9A. You will note that it is very like the
first 20 bytes of the DATA given for a new
game. The last seven bytes deal with lives and
the score and so do not have to be reinitialized
at the beginning of the screen.

There are a couple of other variables that
do not have to be reset either. You will notice
that the 0 and the 10 at the end of Line 140

have been replaced with 255s in Line 460.
These variables are not going to be reset
either—you'll see why in the machine code
programming.

The instruction on Line 550 sends the
processor off the subroutine which prints the
screen up. Then X is set to 0 again and
another loop is executed which copies the
initialization values from the second data
table into the variables' locations.

But this time, between the load and store
instructions on Lines 580 and 610, the byte of
data is compared with 255. And if it is 255, the
BEQ instruction skips the STA. So the two 255s
are not stored - in the appropriate variable
locations and the values in those locations are
carried forward unchanged from screen to
screen.

When the processor has finished initializ-
ing the 18 variables that need to be reset
between screens, it goes on to print up the
first line of the sea.

The variable in &77 is the so-called sea
delay. This is a counter which is counted
down between each advance of the sea. It's a
simple device to stop the sea filling up the
screen too fast.

Normally, during the game, after each
advance of the tide, it is set to 5 and is counted
down to zero again before the next advance is
made. Here, though, it is loaded with 1—so
when the sea routine at &1CCB is called, it
decrements the counter to 0 and the first pixel
line of the sea is printed up.

The counter in Y is set to 0 in Line 660 at
the beginning of this subroutine. It is in-
cremented in Line 710, compared with 8 in
Line 720 and tested in Line 730. So the
processor goes round this loop 8 times. Each
time the loop is executed the sea delay is set
back to 1, so each time the sea routine is called
it prints up another pixel line of sea. It's called
eight times, so the first character line of sea is
printed up on the screen.

Unfortunately, you do not have this sea
routine yet so the JSR will simply return
without any effect—if you have PO KEd 96 into
& 1 CCB.

When the sea routine has been called eight
times, the processor drops out of the routine
and returns.

The following routine sets a series of variables
to the values they need to carry when Willie
starts out on his hazardous task:

ORG 19447 	LDX #3070
NLV. LDA #6 	STX 18253

STA 18246 	CLR 18255
LDX #7424 	LDA #5
STX 18247 	STA 18256
LDX # 5088 	LDA #10
STX 18249 	STA 18257
CLR 18251 	RTS
CLR 18252

This routine is labelled NLV (or New LiVe)
because it is called not just at the beginning of
the game, but after Willie's death.

SEA SET
There is a great advantage in having all your
variables together in one place. It allows you
to check exactly what state the game is in at
any time while you are debugging it.

One-byte variables are set via the eight-bit
accumulator, while two-byte variables are set
via the 16-bit X register, even if the amount
being loaded at this stage can be contained in
one byte. This is because the high byte of the
variable must be set too*

Memory location 18,246 contains the sea
delay. This is loaded with 6 to give Willie a
reasonable chance to scale the cliff before he
gets drowned. Later, the delay can be changed
to speed up the onrush of the sea and make the
game more difficult and more exciting.

The sea must also start at the bottom of the
screen at the beginning of each screen. The
screen position of the left-hand end of the top
of the sea is stored in 18,247 and 18,248. The
number 7,424 is loaded in there which is the
screen position at the bottom left-hand corner
of the screen.

LIFE AND DEATH
Willie's screen position is given by the cont-
ents of 18,249, so this is loaded with 5,088
which is the screen position of the bottom
left-hand end of the slope which is where
Willie starts off from.

Another variable, in 18,251, controls
whether Willie standing still or running and
jumping. A 0 here gives the first UDG
picture of Willie, that is Willie standing still.

The general condition of the game is
monitored by the so-called die variable in
18,252. A 0 here means that Willie is okay. A
1 means that he has reached his reward and
the next game screen has to be called up. And
a 2 means that he is dead! But when the game
starts off Willie is okay, so this byte is cleared.

STONES AND SNAKES
The variable controlling the position of the
boulder is stored in 18,253. And this is set to
3,070, the screen position of the top right-
hand end of the slope where the boulder
begins its roll.

The three snakes have tongues that flick in
and out. But you don't 'want them all to flick
in and out together, so they have to be
staggered. This is done by loading a delay into
the three delay variables in 18,255, 18,256
and 18,257.

The first snake's delay Variable is set to 0
by clearing it. Five is stored in the second
snake's delay variable. And 10 is stored in the
third snake's delay variable.

Further investigation of paged
graphics gives more insights into the
usefulness of this technique. Here
are more programs to demonstrate
them on your micro.

Paged graphics—th7W nique of flipping
from one graphics screen to another—offers
considerable potential in many different types
of application where a fast change over from
one screenful of data to another is desired*
Although an obvious use is in computerized
animation, paged graphics can of course be
put to rather more serious uses, an example of
which is graphs, or illustrating separate
screens of figures, such as may be used in
various types of financial program*

You have already seen on ex 	of the
technique, on pages 1022 to 	* Now it's
time a explore a little further. To rycap
brieflf•the principle be ind aged graNfics is
to define and then confin emory data for
entirely separate screens. his data can take
the form of high or low resolution graphics,
even text—perhaps a combination* Each of
these screens of data can be called up in t4rn,
in very quick succession, without needinthe
characteristic 'building time' between each
screen normal for a graphics display.

This building time is still required, but
needs only take place once for each screen—
before the main display starts—and then this
screen is confined to a suitable area of mem-
ory from where it can be recalled almost
instantly as required*

MEMORY RESTRICTIONS
Each 'page' of screen data requires a certain
amount of memory* How much memory you
need varies, because the more colours you use
and the higher the resolution of the graphics,
the amount of memory required for each
screen is greater* There are in any case severe
memory restrictions on some home com-
puters and the only way to employ paged
graphics on these is to restrict each screen of
graphics to a fraction of the normal depth—a
third or less perhaps. Also, it's often necessary
to sacrifice colours and resolution*

Restricting the memory requirements in
this way leaves free ever-increasing amounts
of RAM but do remember that the program
itself has to fit in there too! You may well
reach a point where the actual definitions for
the extra graphics screens have to take up
more room than the RAM space you've
managed to allocate! A compromise therefore
has to be established—and for each machine
this can be translated into practicable limits
for the numbers of screen pages available.

The paging technique can call individual
screens from memory in any order and more
than once in any sequence if desired. So it's
quite possible to construct a paging sequence
of perhaps eight screens although there are
very much fewer screens in memory. This
useful memory saving technique is especially
effective if care is taken to ensure that
graphics of the repeated intermediate screens
do nothing to detract from the 'flow' of the
animation* Thus, as an example, in a sequence
of paged graphics depicting a stick man

walking you could well have pages 1, 2,3,4,5,
1, 2, 3 44/5 and so on (see page 1135)* But
where sOkg is at a premium the similarity of
images '2 and 4, and 3 and 5 is such that very
little of the effect is lost if each pair is made
the same* This gives a sequence 1, 2, 3, 2, 3, 1
and so on* The sequence is still five images
long, but now only three screens are used.

The Spectrum 48K can, at the most, handle
eight or nine separate screen pages but only in
two (INK and PAPER) colours* You are also
limited to the amount of screen available.
This is based on using about two-thirds
screen depth which accounts for 4K per
screen. Add another 2K or so for the program
itself and the practical limit does appear to be
eight pages, and this is what the following
program—`roadway perspective'—is based
on.

10 B0RDER 0: PAPER O . INK 7: CLS
20 CLEAR 27999
30 G0SUB 170
40 LET srce= 64: LET lest =110

PAGED GRAPHICS RECAP
LIMITS TO MEMORY

THE PAGES AVAILABLE ON
YOUR MACHINE

PAGING TECHNIQUE

PAGED GRAPHICS AND
SPACE REQUIREMENTS

STORING AND RETRIEVING
USING FEWER PAGES FOR

ANIMATION EFFECTS

■111/
50 FOR n=1 	0: PLOTRND*(255),RND'

(40)+13n. NE'
60 FOR n=0 T07
70 FOR m=4 TO 21.t.PRINT AT m*0:"

 —": NEXT m
80 GOSUB 260
90 G0SUB 220: LET dest = dest +16
100 NEXT n
110 LET srce =110: LET dest = 64
120 FOR n=0 TO 7

DRAW a*b: NEXT j
290417AD x,y,a,b,c,d
300 'PLOT x.y: DRAW a,b: DRAW c.d
310 RETURN
320 DATA 128,120.1. — 1.140.105.3. — 3.138.

120.0,2,118.140.10. — 5.10*5.130.118.1.
—1.160.80.6. —6.143.118,0.7*118V,
10. — 3.10,3 	*

330 DATA 133,114,1* — 1.198.30*8. — 8*160.
112,0,15.118.136.10. —1.10.1*1.40.105.4.
—4.128*120.1. —1*184.105.0.30*118*132.
10.3.10* — 3.160.80.6. —6*130,118,1* —1

340 DATA 220.90.0.50*118,134*10.1.10. —1.
198,30.8, — 8.133.114.1. — 1*118*12,09*4.
118.136.10. —1,10,1

350 DATA 128,120,1, —1.140.105.4* —4.80.
100.0*30.118,138.10* —3.10.3*130.118.1.
—1,160,80.6* —6.5.55.0.100,118.139.10.
—4*10.4

The program starts by setting the screen
colour to black and then R.-kNiT-OP to 2 -099.
A small machine-code routine is then placed
above the cleared RAM space by the routine
in Lines 1 -0. 180. 190 200 and 210. The
purpose of this is to handle the transfer of the
screen data *blocks' to memory as they're
created and. later* as they*re recalled from
memory for display. Line 40 sets the initial
high byte values of the variable srce (source'
and dest destination) which subsequently
regulate the memory values when the screen
transfers take place.

The first part 'of the graphics routine
begins at Line 50 =Amply draws at randOm
positions on the screen. These are fixed in
position and although they are included in
each page. they are not redraWn each time—so
they do not form part of the main drawing
sequence. Line -0's purpose is to blank off in
effect, overwrite with spaces' the bottom of
each screen but without erasing the stars at
the very top. A loop of eight screens has at this
point already commenced „Line 60'i and the

graphics routine continues by drawing
0 first the horizon ‘ Line 26 .'. sides of

- road (Line 2 -0'. the road itself
and poles (Line 280'. then a

flapping bird (Line 290)
—in each

130 G0SUB 220: LET srce=srce+ 16
140 PAUSE 4
150 NEXT n
160 G0T0 110
170 DATA 1,0,16,17,0*0.33,0,0,237.176,201
180 F0R 1=28000 TO 28000 + 11
190 READ byte: P0KE i,byte
200 NEXT!
210 RETURN
220 P0KE 28005,dest
230 P0KE 28008,srce
240 RAND0MIZE USR 28000
250 RETURN
260 PL0T 0,120: DRAW 255,0
270 PL0T 118,120: DRAW —118,-80: PL0T

138,120: DRAW 117, — 50
280 FOR j=1 T0 3: READ x,y,a,b: PL0T x,y:

instance READing data from the block at the
end of the program (Lines 320 onwards).

RETURNing from the drawing routine, the
program goes to a POKE routine beginning at
Line 240 to copy the 4K screen into its
appropriate place in memory. The dest ad-
dress is now incremented by a high byte value
of 16 (16*255 = 4K) to create the 4K storage
space needed for the next page of graphics.
The program then loops through the drawing
routine again, and the whole cycle is repeated
for a total of eight times, with a slightly
different 'frame' being created on each pass.

The program then successively calls up the
page blocks to create the animated paged
graphics sequence. In effect, the `dest' loc-
ations become the new `srce' locations and are
in turn called from memory using the POKE
and US R routine in Lines 220 to 250*

You can use the main routine without
modification to create your own paged
graphics. Just replace the drawing sequences
(Lines 50, 70, 80 and Lines 260 onwards)
with your own graphics routines* If you do
not use fixed elements like the stars, you will
not need a Line 50 outside the drawing loop,
and Line 70 can be replaced by a CLS as none
of the screen need be preserved* Don't make
your program too long, as it must not use
memory that is required for the pages.

13K
Only two or three full-area hi-res screens can
be retained in memory at once* Bit-mapping
the whole screen into memory means that
each would require about 8K of memory.
Obviously, smaller sections of the screen area
may be used to increase the number of pages

available for paged graphics and this is what's
been done in the example that follows to give
five screen pages*

This program makes use of Simons'
BASIC or, with amendments, the INPUT
equivalent (the high-res facility)* Each system
imposes certain memory restrictions and only
approximately 16K is left available for screen
page memory. For instance, the Simons'
BASIC extension makes use of RAM between
8192 and 16384 and it's convenient to make
use of RAM above this for the graphics pages*

20 POKE 51,255:POKE 52,29:POKE 55,
255:POKE 56,29:CLR

30 GOSUB 220
40 D=64
50 FOR N=0 TO 4
60 HIRES0,1:MULTI 7,4,3:COLOUR 6,0

70 FOR Z = 1 TO 12:FOR ZZ = 1 TO 3:LINE
Z*Z + ZZ*(N +1),0,Z*Z + ZZ*(N + 1),100,
ZZ

75 PLOT RND(1) * 160,RND(1) * 100,RND(1) *
 3 + 1:NEXT ZZ,Z

80 FOR ZZ=1 TO 3:LINE 0,(N*13) + ZZ*
(N + 1),159, (N*19) + ZZ* (N + 1),ZZ:NEXT
ZZ

90 FOR ZZ=1 TO 3:CIRCLE 10 + N*35,60,
20 — ZZ*3,10 + N*3,ZZ: N EXT ZZ

100 GOSUB 430:D= D +12
110 NEXT N
130 BLOCK 0,0,159,199,3
140 TEXT 0,100,"ANIMATION",0,8,19
150 D =64:FOR N=0 TO 4
170 GOSUB 440:D= D +12:FOR T=1 TO

15:NEXT T
190 NEXT N
200 GOTO 150
220 FORZ = 7680 TO 7738:READ X:POKE Z,X:

NEXT Z:RETURN
230 DATA 169,0,141,14,220,169,53,133,1
240 DATA169,0,133,251,133,253,169,224,133,

252,169,64,133,254,160,0
250 DATA 177,251,145,253,192,63,208,16,

165,252,201,235,208,10
260 DATA 162,1,142,14,220,162,55,134,1,96,

200
270 DATA 208,229,230,252,230,254,76,25,30
430 POKE 7700,D: POKE 7706,251:POKE

7708,253:SYS 7680: RETURN
440 POKE 7700,D:POKE 7706,253:POKE

7708,251:SYS 7680:
RETURN

The program starts by setting the top of
BASIC just enough below the start of
Simons' to accept (note the CLR) a small
machine-code routine which handles the pag-
ing of the graphics screens. This routine is
loaded into memory by the subroutine at Line
220 and is later accessed for both storage and
recall of the pages by SYS calls.

The first of the screen pointers is preset in
Line 40 to the start of the RAM area available
above Simons'. The program then continues
by starting the drawing routine for the first of
the five screens set up by the FOR...NEXT loop
in Line 50. Lines 60 to 90 handle the actual
design. When this is complete, a POKE routine
in Line 440 is accessed, a SYS call is made to
the machine-code routine, and the first pic-
ture block is confined to its appropriate place
in memory.

The drawing loop then continues for a
further four screens, each being allocated a
fresh 3K block via the pointer adjustment
D = D + 12 in Line 100.

Line 130 then clears off the screen by
overpainting in light blue, and Line 140
prints a message as a start to the animation

One method of appearing to use
more pages in an animated sequence
is shown above. By using only three
separate images, two of which are

sequence which follows immediately*
The memory pointer D is reset to the

original 64 value, the start location of the first
screen immediately above the end of Simons'.
The first of the five screens is then recalled
from memory using the routine in Line 440
which again accesses the machine code page
graphics routine at location 7680*

The pointer is reset for the next screen
(D = D +12 in Line 170), a small time delay
loop is activated T =1 TO 15, and then the next
screen is called up to overwrite the last. The
program then cycles through the five frames,
restarting with the original pointer when the
loop is complete*

To make the program work on INPUT's
Commodore hi-res program, repalce 224 in
Line 240 by 32, and replace 235 in Line 250
by 43.

You can use the same machine-code rout-
ine for your own graphics displays, providing
you establish the right-hand lower screen
coordinate and set the low byte value in place
of 63 and the high byte value in place of 253 in
Line 250 when a Simons' cartridge is used*
With the INPUT hi-res program in use,
remember that the screen memory locations
start at 8192 (lo 0, hi 32) and not 57344 as
with Simons'. Otherwise the same two figures
are changed.

If your animation design means that a
smaller screen size can be employed, releasing
more memory for paging, adjust the

repeated, a five-image, relatively
smooth effect of walking is attained.
With this technique, memory
restrictions can be sidestepped

FOR**.NEXT loops and the value of the D
pointer increment to suit the number and
memory size of each page.

Because of acute memory restrictions in many
of the high resolution modes, it's best to
restrict yourself to Mode 4 if you wish to
explore the potential of paged graphics on the
standard Acorn computers. The example
program here uses nine paged screens of
quarter screen depth*

In the program for the BBC that follows,
use is made of a variation of the VDU23
instruction* As this is not on the Electron, a
small machine-code routine has to be added
and other amendments made before the
program can be used on this machine. These
follow the main listing. Even then, it's not
possible to blank out the unwanted upper part
of the screen which is used for screen image
storage* The effect is nevertheless interesting*

10 MODE4:VDU23;8202;0;0;0;
20 B = P1/20
30 HI M EM = &2600:?&34E = 26
40 VDU 23;6,8,0;0;0;
50 VDU 24,0;768;1279;1023;
60 FOR X=0 T08
70 PROCSCREEN
80 CLG
90 PROCDRAW
100 PROCWAVES

A practical application of paged
graphics techniques in
commercially available software is
shown above: Flight Simulator II
from subLogic, which runs on the
Commodore 64* Here, smooth
screen displays are achieved by
treating the display as an animated
film, the next frame being drawn off
screen, and flashed on, completed

110 NEXT
120 FOR T=0 TO 10000:D =1NKEY(5):

X=T ❑ MOD9:PROCSCREEN
130 IF T ❑ MOD9=0 THEN SOUND1,-15,0,

1
140 NEXT
150 END
160 DEF PROCSCREEN
170 MEM =&7600—V&A00
180 ?&351 = MEM ❑ DIV 256
190 ?&350= MEM ❑ MOD 256
200 MEM = MEM/8
210 *FX19
220 VDU 23;13,MEM ❑ MOD&100,0;0;0;23;

12,MEMEDIV&100,0;0;0;
230 ENDPROC
240 DEF PROCDRAW
250 MOVE1000,800:DRAW1000,1000
260 FOR T=800 TO 990 STEP16:MOVE1000,

T:DRAW1016,T + 16:NEXT
270 PRINTAB(33,3)"WALL"
280 MOVE500,875:DRAW450,875
290 DRAW450,925:DRAW500,925
300 DRAW500,875:DRAW575,825
310 MOVE500,925:DRAW575,975
320 PRINTTAB(3,2)"LOUDSPEAKER"
330 ENDPROC
340 DEFPROCWAVES
350 E= X*180
360 FOR G=1 TO 5
370 1=500+ E * COS— B:IF I>1000 THEN

1=2000-1
380 MOVE 1,900+ FSIN— B
390 FORA= — B TO B STEP 0.1
400 1=500+ PCOSA
4101F I>1000 THEN 1=2000-1

420 DRAW 1,900+ E * SINA
430 NEXT
440 E=E+60
450 NEXT
460 ENDPROC

The initial choice of MODE 4, set in Line 10, is
because this offers the best compromise be-
tween memory usage and resolution. A look
here at the allocation of memory shows the
reason for this. If one presumes a 'worst case'
situation with a disk unit fitted, 3K is already
accounted for. Add to this a realistic amount
for the program and variables and about 6.5K
is accounted for.

Restricting the display to a quarter depth
screen in MODE 4, means that only 2560 bytes
are required for each page. This gives you at
most nine pages for animation purposes when
the number of bytes is divided into the
remaining free memory.

Nine screens is ample for the subject
matter used as an example for this program. If
you need a considerable extra amount of
detail (hence more programming to draw it),
you may find that the memory restricitions
mean that one or more screens will have to be
sacrificed. So, unavoidably, there's an ele-
ment of suck-it-and-see involved in discover-
ing how many are available.

THE PROGRAM
On with the program itself. Line 10 cont-
inues by introducing the first use of 23 in an
instruction which simply 'loses' the cursor.
The next line sets the variable used in one of
the drawing routines later. The HIMEM in-
struction in Line 30 then sets the limit of
BASIC and the start of screen page memory
at &2600.

The VDU 23 instruction of Line 40 now sets
the screen up to show the top eight lines only.
Once you've got the program up and RUNning
you could try removing this entire line. All
four sectors of the screen become visible—the
lower three displaying the stored graphics
pages successively displayed in the top
section.

The actual screen 'window' is set up by the
VDU 24 instruction in the following line, the
figure pairs afterwards representing the
screen coordinate of the bottom left corner
and top right corner respectively.

The PROC which follows works out the top
left pixel position coordinates for each of the
nine screens is established by Lines 180 and
190 and used in subsequent VDU 23 instruc-
tions. The *FX call in Line 210 simply delays
the computer until the next 'frame' is ready to
start.

The two VDU 23 instructions of Line 220

The Spectrum's endless road

memorize the low and high byte values of
each screen start address, using register 13
and 12 (respectively) of the 6845 chip. The
remnant of each instruction is padded out
with zeroes.

Two separate P ROCs follow as part of the
graphics routine If you want to create your
own paged graphics, you can use the main
program without modification by inserting
your own graphics routine in place of the
example. But bear in mind the memory
restrictions which limit the length of the
drawing routines.

CHANGES FOR THE ELECTRON
Delete Lines 40 and 200 in the BBC program
above and make the following changes for the
Electron:

20 B = PI/20:PROCASS
50 VDU 24,0;768;1279;

1023;:?&351 = &76:
?&350 = 0

120 FOR T=0 TO 10000:D= INKEY(25):
(T ❑ MOD8)+1:

PROCSCREEN
180 X% = MEM ❑ DIV 256
190 Y%= &76
220 CALL SWITCH
470 DEF PROCASS
480 DIM SWITCH ❑ 50
490 FOR T=0 TO 2 STEP 2
500 P%= SWITCH
510 [OPT T
520 STX &71
530 STY &73
540 LDX # 10
550 LDY # 0
560 STY &70
570 STY &72
580 .L2 ❑ LDA (&70),Y
590 PHA
600 LDA (&72),Y
610 STA (&70),Y
620 PLA
630 STA (&72),Y
6401NY

Commodore screen graphics

650 BNE L2
660 INC &71
670 INC &73
680 DEX
690 BNE L2
700 RTS
710]:NEXT
720 ENDPROC

With these amendments, two chunks of mem-
ory attend to the necessary paging techniques.
Line 50 sets the screen permanently to the
&7600—&8000 block and then informs the
computer that this is the case. The machine
code is used to move the different screens in
and out of the viewed screen which is the
bottom eight lines on your TV. Pointers for
the machine-code call are set in Lines 180 and
190, where X% works out the high byte of the
screen, a value of 1 to 8 established in Line
120.

1111
The Dragon and Tandy models have a clear-
cut advantage over the other computers here
because of the ready-made ability to handle
paged graphics. This comes courtesy of the
powerful PCOPY command used to shift
graphics data from screen to memory and
back again—a simple BASIC paged graphics
command word!

In the example which follows, based on the
choice of PMODE 3 graphics, five three-
quarter size screens are used.

10 PC LEAR4: P M OD E3:CLEAR40,9215
20 SCREEN1,0:FORK=0T04:PCLS
30 CIRCLE(127,120),20,4,1,17,.55:LINE(110,

116) — (127,120), PSET: LI N E — (132,136),
PSET: PAINT(122,135),2,4

40 DRAW"BM137,136S8F6D10L9U15L4D19R1
7U14E2N E6L8": PAINT(150,150),3,4: D RAW
"C3BRR4C4"

50 DRAW"BM110,116S16L14U10R21D3RU5
L24D14R15":PAINT(90,120),3,4

60 COLOR3:FORL = 0TO5 — K:LINE(148 — L,
146 — L) — (156+ L,146 — L),PSET:NEXT

70 DRAW"BM141," + STR$(86 + K) +

Acoustics on the Acorn

"C3S4F2G2H3E2D4":D RAW" BM141,"
+ STR$(INT(88 + 1.5*ICK)) + "D2F2DL4
UE2D4"

80 DRAW"BM" + STR$(INT(141
+ 1.8*K)) + "," + STR$(127 + 5*K) +
"H3E3F2G2DU4G2"

90 COLO R2: FO R L = 0T05: LI N E
(110 — L*10 — K*2,117) — (110 — 	0 —
K*2,123), PSET: N EXT

100 FORL= 0T07:LINE(54+ L * 10 + K*2,
75) — (54 + L*10 + r2,69), PSET: N EXT

110 FORL 0T03:LINE(48,115 — L*10 — K*2)
— (52,116— L*10— K*2),PRESET:NEXT

120 IFK = 0 THENDRAW"BM110,124C3H2UE2
F2DG2U4"

130 CO LOR4: FOR L = 0T 02:A = ATN (1) *
 (L*60 — K*12)/45:LINE(127 —18*SIN(A),

120 —18*COS(A)) — (127 + 18*SIN (A),
120+ 18*COS(A)),PSET:NEXT

140 A = ATN(1)*(8 + K*12)/45:DRAW"BM" +
STR$(1NT(127 —18*SIN(A)))+","+ STR$
(INT(120 +18*COS(A))) +"C3E2UH2G
2DF2U6C4"

150 FORL = 2T04:PCOPYL T04 + K*3 + L:
N EXTL,K

160 FORL =1T05:FORK = 2T04:
PCOPYK + L*3 +1TOK:NEXT,L:GOT0160

The program starts by allocating four blocks
(1.5K each) for screen data because PMODE 3
was chosen for this display and each screen in
this mode requires 6K memory. Although
four pages is the default value for PCLEAR,
setting the value places the BASIC program
exactly between the memory areas used for
the screen and graphic data. In other circum-
stances the value can range from 1 to 8
depending on how much reserved memory is
required.

So far 6K has been allocated. A further
1.5K is lost to BASIC and to the test screen,
leaving about 25K of available RAM. Using
whole screen pages requiring 6K memory
apiece permits up to four screens of paged
graphics (25K divided by 6)—but this leaves
very little room for the program itself.

Restricting the display to just three-

Perpetual motion on the Dragon

quarters of the screen depth means that each
screen requires only 411(memory. Five
screens of page graphics can be accomodated,
while leaving about 2K with the program
itself. There isn't enough room for a disk
operating system, however. After setting
PMODE 3 display—four colours with a reso-
lution of 128 x 192 pixels—the first line of the
program CLEARs the 'meanest' amount of
string storage space beyond memory location
9215, a figure that you may have to establish
by trial and error for your own routines. The
default, incidentally, is 200—which is rather
wasteful under these circumstances.

The second line continues with the setting-
up process by defining the screen resolution
(hi-res) and colour set 0, begins the graphics
drawing loop, and ends with PCLS.

The graphics routines which follow occupy a
significantly large part of the program. Line
30 builds and colours the body of the per-
petual motion pump which forms the basis of
the display. Line 40 constructs the funnel
pipe and infills with colour. Line 50 does the
same for the overhead pipe. Lines 60, 70 and
80 look after the graphics for what is eventu-
ally an animated water drop sequence. Lines
90, 100 and 110 then construct the bottom,
top and vertical water 'flow' stripes which also
help suggest movement when the animated
display is underway. Further pump detail—
such as rotation of a paddle—are added by
Lines 120, 130 and 140.

Line 150 then copies the bottom three-
quarters of the screen into memory, into the
protected area defined in Line 10. The
program loops to the start of the graphics
routine creating an additional page of
graphics on each pass, this too being confined
to its appropriate memory location when Line
150 is reached again.

Once the graphic screens are in memory,
the program proceeds with the page graphics
routine handled by Line 160. This simply
copies what's been copied into memory back
to the screen, in a five-screen-loop which
creates the animation sequence.

When you master the envelope
statement on your Commodore 64 or
Acorn micro, you can mimic a vast
range of sounds and music—useful
for your other programs

Adding sound can make all the difference
to an ordinary, run-of-the-mill program and
make it an interesting one that is excit-
ing, informative and fun to use. Most micro-
computers allow you to program pure notes
or noises for applications such as games,
simple tunes and special effects. For more
sophisticated work, however, it is much better
if you can modify the tones generated by the
micro to enable you to mimic sounds—from

an emergency siren to a chirping bird or a
particular musical instrument. This facility is
provided directly from BASIC by the
ENVELOPE statement, which is available on
Acorn micros and indirectly (by POKEing
memory locations) on the Commodore 64.

WHAT IS A SOUND ENVELOPE?
An electronic sound is produced by a circuit
called an oscillator. This generates a wave of a
particular frequency (pitch) and amplitude
(volume). When this is passed to a loud-
speaker a note of that frequency and ampli-
tude sounds. To change the note, vary its two
parameters—higher frequencies give higher
pitch, and greater amplitude gives more vol-

ume. Some computers do not give you this
much control—the Spectrum, for example,
only lets you vary the frequency (and the
duration), not the volume of the note*

Changing these parameters generates a
wide range of musical notes. If you combine
all the notes at once, you produce a noise of
indeterminate pitch—called white noise. This
is the principle of the SOUND command on
the BBC micro, for example, but it produces
only a limited range of sound effects. This is
because the note it produces is purely mech-
anical without the characteristics of any parti-
cular instrument—the quality that makes a
saxaphone playing middle C sound different
from a piano playing the same note. To mimic
the sound of a piano or an organ, for example,
the notes generated by the oscillators in the
micro must be modified—the waveform of
the notes must be shaped. This is what a

WHAT IS A SOUND ENVELOPE?
WAVE MODULATION

THE AMPLITUDE ENVELOPE
THE PITCH ENVELOPE
DESIGNING A SOUND

HOW IT WORKS
SHAPING THE WAVE

INTERDEPENDENCE OF PHASES
MAKING SOUNDS

BBC AMPLITUDE ENVELOPES

synthesizer does to enable it to produce a wide
range of sounds*

The shaping of a sound wave is a form of
modulation—the same principle that makes it
possible for speech to be transmitted by radio
waves. Radio starts with a wave of particular
frequency and amplitude (a carrier wave) on
which is superimposed the speech waveform,
which envelopes the sine-wave pattern of the
carrier wave* If the envelope shapes the peaks
of the carrier wave, the amplitude is no longer
constant, but varies according to the speech
wave—this is Amplitude Modulation or AM.
If the envelope shapes the carrier wave along
its length (in time), the frequency of the
carrier increases or decreases according to the
speech wave to give Frequency Modulation
or FM.

In a similar way, micros can have ampli-
tude envelopes (found in the Commodore 64),

or frequency envelopes—usually called pitch
envelopes—found on the Electron micro* The
BBC micro is unusual—it has both types of
envelope. The effects of either type of modu-
lation are to impose a new and subtly different
quality onto the pure note.

However sophisticated the micro, its sound
producing quality is unlikely to be as good as
that of a synthesizer—which is dedicated to
producing sounds. So it is difficult for a
computer to generate a convincing synthesis
of acoustic instruments. Imaginative use of
envelopes, however, can let you produce a
wide range of sounds, some are reasonable
mimics of real instruments and others totally

unlike any existing instruments, but nonethe-
less interesting and useful.

THE AMPLITUDE ENVELOPE
The easiest way to understand an amplitude
envelope is with a graph of loudness or
amplitude against time. When a musical
instrument sounds a note, energy is applied to
the string, reed or whatever, making it vibrate
and setting the surrounding air in motion*

The sound of an organ, for example, rises
quickly to a peak of loudness, which is
maintained at a constant level while the note is
sounded, then it dies away. On a piano or
guitar, however, the initial rise is similar to
the organ's, but the loudness instantly begins
to die away. If the key is then released (or the
string touched), the sound is silenced quickly.
To simulate these sequences of the way in
which a note builds up, is sustained and then
falls away, you can program an envelope as
part of the SOUND command on the Acorns,
or the MUSIC and PLAY on the Commodore.

THE PITCH ENVELOPE
The pitch envelope is a little more com-
plicated to understand than the amplitude
envelope. Once again, it can be depicted as a
graph against time, in which the frequency
speeds up owipws down, raising or lowering

the note. Shaping the envelope, however, is
not the same as simply changing a note to a
different pitch, since the variation occurs in a
controlled and regular way over a period.

An example of how this might appear in
music is when vibrato is applied to a note,
producing a throbbing effect. Or in sound
effects, it could be the note produced by a
siren, warbling up and down on a regular
basis. Another common example is the
`Doppler effect', in which the sound of a fast
moving vehicle appears to rise in pitch as it
comes towards the listener, falling again as it
moves away.

The pitch envelope is only available on the
Acorn machines. On the BBC, it can be used
in conjunction with the amplitude envelope to
produce some of the most sophisticated syn-
thesized sounds that are available on a
microcomputer.

DESIGNING A SOUND
Although you can soon learn to analyse
certain sounds, it is not always easy to design
an envelope to give the effect you require, so
the task, especially for creating sound effects,
is often a matter of trial and error. Here is a
program that lets you change the envelope
parameters, then listen to the sound:

10 POKE650,128:POKE 53280,3:POKE
53281,3

20 A = 4:D =7:S=6:R = 9:FF =17
30 FOR 1=1 TO 20:S$ = + ❑ 11"

:NEXT
40 Ris="11PIMPIPJPINNIPM

10.11.11JPJPJPJPJHPJIIHNI1
PJIMPJEINIMPJPJPJFJP1
PJPJPJPJP.1"

50 Burs="Igggigggigggggigggg
ggggggggggggggggmgggg

60 GOSUB 1000
70 POKE 54296,9
80 POKE 54273,40
100 GET X$
110 IF X$ =" Ill" THEN GOSUB 500
120 IF X$< >"" THEN GOSUB 1000
130 GOTO 100
500 POKE 54276,FF
510 FOR 1=1 TO 230:NEXT
520 GET X$:IF X$ = "El" THEN 510
530 COKE 54276,FF-1

An amplitude envelope produced on the Commodore 64 At least 18 variables must be set to specify a BBC envelope

540 RETURN
1000 IF X$="A" THEN A=A+ 1
1010 IF X$="D" THEN D=D+1
1020 IF X$="S" THEN S=S+1
1030 IF X$="R" THEN R=R+1
1040 IF X$="40" THEN A=A-1
1050 IF X$="8" THEN D= D -1
1060 IF X$= "1E" THEN S= S -1
1070 IF X$ = "II" THEN R = R -1
1076 IF X$="a" THEN FF=17
1077 IF X$="M" THEN FF=33
1078 IF X$ = "II" THEN FF=65
1079 IF X$="." THEN FF=129
1080 A=A AND 15:D=D AND 15:S=S AND

15:R = R AND 15
1090 POKE 54277,A*16+D
1100 POKE 54278,S * 16+R
1120 PRINT "ogggiggigarT="A,

"DEC = "D,"SUS = "S,"REL = "R
1130 PRINT"IgIMPRESS 61KEYM TO

INCREASE VALUE"
1140 PRINT"PRESS LISHIFTM AND

LIKEYM TO REDUCE"
1150 PRINT"PRESS rulSPACEM FOR

SOUNDU"
1200 XX= 0:HT= 0
1210 HT= HT+ (16 - A)/4:IF HT> 20 THEN

HT= 20
1220 GOSUB 2000
1230 IF (HT<20) AND (XX<40) THEN 1210
1240 IF XX = 40 THEN RETURN
1250 HT= HT- (16- D)/4:IF HT <20*S/15

THEN HT= 20 * S/15
1255 IF HT<1 THEN HT=0
1260 GOSUB 2000
1270 IF (HT> 20*S/15) AND (XX<40) THEN

1250
1280 IF XX = 40 THEN RETURN
1290 FOR X = XX TO 30:REM SUSTAIN

PHASE 	 .

1300 GOSUB 2000
1310 NEXT
1320 HT= HT- (16- R)/4:IF HT< 0 THEN

HT=0
1330 GOSUB 2000
1340 IF (HT> 0)AND (XX <40) THEN 1320
1350 RETURN
2000 PRINT BOT$
2005 IF HT=0 THEN RETURN
2010 PRINT LEFT$(RI$,XX);
2020 PRINT LEFT$(S$,HT * 3 + 1)
2030 XX = XX +1
2040 RETURN

The Commodore 64 allows you only to shape
the amplitude envelope of the basic wave—
you have a choice of four types of wave to start
with. Then, to synthesize a particular type of
sound, you can program four phases—Attack
(A), Decay (D), Sustain (S) and Release (R).
This type of envelope is usually called the
AD SR system. The Attack phase is the rate at
which the loudness increases when the sound
is first initiated. The Decay is the initial
dieing away, then comes the Sustain—the
steady level, as in an organ. The fourth
phase—the Release—is the rate at which the

loudness falls to zero.
Run the program to see initial ADSR

values printed at the top of the screen, and a
graph of the envelope produced by these
values. Press the space bar for a note,

You can change the AD SR in this program
by pressing the appropriate key: hold down
A, D, S or R to increase the values; 'SHIFT'
with the same key to decrease the values. After
each keypress, the printed values and the
graph will be updated on the screen.

The type of sound produced by any set of
AD SR values depends on the basic waveform
that the envelope is shaping. The program
lets you change between the four available,
using the function keys. Key fl gives triangle,
f3 gives sawtooth, f5 gives pulsed and f7 gives
noise. For certain settings, you may not detect
a sound when you press f5, because the sound
decays before reaching an audible level*

When you come to program your own
sounds, it is useful to understand how this
program works, but in practice you generally
need only a few lines of program to make
fairly complicated sounds. Line 10 enables
auto-repeat of the keys, to detect that the

space bar is being held down* Line 20 sets the
initial AD SR values. Line 30 sets up a
character string to draw the graph (a hist-
ogram) of the envelope. Line 40 sets up a
string to move the cursor to the bottom of the
screen, and Line 50 sets up a string to move
the cursor a controlled distance along the
bottom of the screen, placing the cursor on
the column for the current histogram block.

Line 60 calls a subroutine to display the
envelope for the intital AD SR values. Lines
70 and 80 set the master volume and frequ-
ency of the oscillator for voice 1. Volume
settings can range from 0 (off) to 15 (loudest),
so you can experiment with this by changing
the second figure at Line 70. Lines 100 to 130
form the main loop: the program waits for a
key, updates the AD SR values and displays
the revised histogram.

The subroutine at Line 500 ensures that
envelope one is switched on so long as the
space bar is pressed. The subroutine at Line
1000 updates the ADSR values (Lines 1000
to 1080), and POKEs them into the appropri-
ate registers (Lines 1090 to 1100). Lines
1200 to 1350 calculate the histogram,
working through the four phases (A, D, S, R).
The variables XX and HT are the X coordi-
nate and height of the current column.

The subroutine at Line 200 displays the
column of HT at position XX, using the strings
mentioned earlier* The cursor is placed at the
bottom of the screen, at column XX, by Lines
2000 and 2010. The column is then drawn by
Line 2020*

SHAPING THE WAVE
' The ADSR phases for voice 1 are each
controlled by nybbles in location 54277 and
54278: the attack value is controlled by the
upper nybble of location 54277, the initial
decay by its lower nybble, the sustain level by
the upper nybble of 54278 and the final
release by its lower nybble*

For an oscillator to become audible, a
waveform must be selected and its envelope
shaper triggered: this is done by setting bits in
the register that controls the voice (at location
54276, Line 500, for voice 1). Bit 0 of this
register is the 'gate' or 'trigger' for the voice's
envelope shaper. Its action is rather like that
of a key on an organ: as long as a key is held
down the note sounds. When the key is
released the note enters its final release phase.

The control registers also select and switch
on the waveform to be used: setting bit 7 to 1
selects randomnoise, bit 6 selects pulse wave,
bit 5 selects sawtooth wave, bit 4 selects
triangular wave. The bit controlling the en-
velope has to be combined with the bit
selecting waveform. So POKE 54276,33 selects
a sawtooth wave and switches the gate on:
POKE 54276,32 switches the gate off (by
setting bit 0 to 0) but leaves the waveform
selected and thus initiates the envelopes's
final release phase* Note that POKE 54276,0
would switch the gate off but would also de-
select the waveform, silencing the voice.

INTERDEPENDENCE OF PHASES
To make the best use of the ADSR envelope,
it is important to understand how the four
phases interact. Consider what happens if the
Sustain value is 15, its maximum value. The
maximum level (reached at the end of the
attack phase) will be the same as the sustain
level, so there is no decay from one to the
other, and the resulting envelope will sound
the same irrespective of the decay value.

As a second example, suppose the sustain
value is 0, initial decay is quite long and final
release is very long. At the end of the attack
phase, the note starts to decay towards no-
thing at the initial decay rate. Switching the
gate off sooner rather than later, (but before
zero level has been reached), will, rather
paradoxically, extend the note, because the
slower-falling release phase is entered.

10 MODE0
20 VDU28,0,31,79,3,23;8202;0;0;0;
30 N=16
40 DIM I(N),A(N),MIN(N),MAX(N)
50 FOR T=1 TO N
60 READ 1(T),A(T),MIN(T),MAX(T)
70 NEXT
80 PRINT TAB(27,0)"ENVELOPE

EXPERIMENTOR"
90 PRINT TAB(4,2)"KEY:LIX/T1111111111111111

❑❑❑ 2 ❑❑❑❑ 3 ❑❑❑❑ Q ❑❑❑
❑ W ❑❑❑❑ E ❑❑❑ A ❑❑❑❑ D ❑
❑❑❑ S ❑❑❑❑ R ❑❑❑❑ Z ❑❑❑
❑ C"

100 PRINTTAB(10,3)"T ❑ ❑ ❑ ❑ PI1 ❑ ❑

PI2 ❑ EIP13111EPN1 ❑ EIPN2111111PN3
❑ EIAAEI ❑ DADE] E EASE E OAR
El ❑ III ALA ❑ ❑ ALD"

105 PRINTTAB(26,17)"PRESS KEY TO
INCREASE VALUES"TAB(23,19)"PRESS
KEY + SHIFT TO DECREASE VALUES"TAB
(26,21)"PRESS RETURN TO DOUBLE
CHANGE" TAB(26,23)"PRESS SPACE TO
SOUND ENVELOPE"

110 PRINT TAB(33,8)"SOUND STATEMENT"
120 PRINT TAB(4,10)"KEY:"TAB(26,10)"P"TAB

(48,10)"L"TAB(20,11)"INITIAL ❑ PITCH
❑❑❑❑❑❑
DURATION ❑ TO ❑ RELEASE"

130 IF INKEY(—1) THEN D= —1 ELSE D=1
140 IF INKEY(—74) THEN D = D*2
150 FOR X=1 TO N:PROCJ:NEXT
160 ENVELOPE1,A(1) + A(2) * 1 28,A(3),A(4),

A(5),A(6),A(7),A(8),A(9),A(10),A(11),
A(12),A(13),A(14)

170 PROCSH0W
180 IF NOT INKEY(—99) THEN 130
190 SOUND17,1,A(15),A(16)
200 REPEAT UNTIL NOT INKEY(-99):GOTO

130
210 DEF PROCSHOW
220 PRINTTAB(10,5);A(1) + A(2)*128" ❑ El"
230 FOR T=3 TO 14:PRINTTAB(T*5,5);A(T)

"E ❑ ❑ ":NEXT
240 PRINTTAB(25,13);A(15)"111

(47,13);A(16)" ❑ El"
250 ENDPROC
260 DEF PROCJ
270 IF INKEY(— I(X)) THEN A(X) = A(X) + D
280 IF A(X) > MAX(X) THEN A(X) = MIN(X)
290 IF A(X) < MIN (X) THEN A(X) = MAX(X)
300 ENDPROC
310 DATA 36,1,0,127
320 DATA 67,0,0,1
330 DATA 49,-2, —128,127
340 DATA 50,-1,-128,127
350 DATA 18,1, —128,127
360 DATA 17,6,0,255
370 DATA 34,8,0,255

380 DATA 35,1,0,255
390 DATA 66,127, —127,127
400 DATA 51, — 127, — 127,0
410 DATA 82,-1,-127,0
420 DATA 52, —127, —127,0
430 DATA 98,126,0,126
440 DATA 83,100,0,126
450 DATA 56,100,0,255
460 DATA 87,40,1,254

This program allows you to shape either a
pitch envelope or an amplitude envelope.
Users of the Acorn Electron can enter the
program without modifications, but this
micro does not allow you to vary the last six
parameters of the sound statement, so you can
specify only pitch envelopes. For that reason
the amplitude envelopes section of this article
applies only to the BBC micro.

Enter and RUN the program, when the
display will show the keys you can press to
change parameters in this program. Beneath
these appear the variable names used in the
User Guide (page 182) to define the
ENVELOPE command, and beneath these are
the initial values. The program uses four arrays
(dimensioned at Line 40) to READ 16 lines of

DATA into a FOR...NEXT loop (Lines 50 to
70). Each line of DATA consists of a value to
identify the key being pressed, the initial
value for each envelope parameter and the
maximum and minimum values this para-
meter can take.

Lines 80 to 120 PRINT the screen display,
and Lines 130 and 140 set intervals by which
the parameters can change. If you press any of
the keys listed on the screen, Line 130 lets the
parameter for that key increase by one, but if
you press 'SHIFT as well, then the parameter
decreases by one. Line 140 detects RETURN I ,
which you can press to increase or decrease
the parameters—to speed up the program.

Line 150 updates the parameters, using a
routine (Lines 260 to 300) to ensure that
values change continuously from maximum

Pitch and amplitude envelopes can be
designed separately (far left) on the
BBC micro, but they are specified as a
single statement. The four phases (D) of
an amplitude envelope need not all
occur in every type of sound. Some
sounds (A) have no decay; others (B and
C) have neither decay nor release

to minimum, at the rate set by D. Using these
values, Line 160 calls the ENVELOPE com-
mand, which has 14 parameters. Line 170
calls a routine to print the new values on the
screen. The first value in the ENVELOPE
command is always the envelope number—in
this case 1. Normally, you can define envel-
opes 1 to 4, but if you do not use the BASIC
statement B PUT and BG ET you can define1 to 16.

The first updated value in the envelope
command to be printed (Line 220) is the time
interval, which can vary between 1 and 127.
Normally, the pitch envelope auto-repeats
until the sound dies away. If you don't want
the auto-repeat, add 128 to the value of the
time interval to get a single execution.

Line 230 prints the other updated values in
the envelope command, and Line 240 prints
two values in the SOUND statement (called at
Line 190). Line 180 detects whether the space
bar is pressed. If it is, the SOUND statement
calls the envelope to make the sound.

Besides the envelope number, the SOUND
statement sets values for initial pitch and
duration of the sound, and the first parameter
contains an equally important element.
Normally, you can have a sound statement
with channels 0, 1, 2, or 3, but notice that
Line 190 has 17 as the channel number. In
fact, the channel number comprises four
parameters (see page 187 of the User Guide).
The first two of these control when notes are
sounded on each of the four channels; the
second can be 0 or 1, and controls whether a

note is placed in the queue or whether other
notes are flushed so that a particular note
sounds immediately. In this program, we
need notes to sound instantly, so the sound
statement is flushed (set to 1). If the first two
paramemters are not set, they can be ignored
(they are zeros), so a value of &11 specifies
immediate sounding on channel 1. In deci-
mal, this is 17, which explains the unusual
value in Line 190.

MAKING SOUNDS
Change the values displayed on the screen, by
pressing the keys indicated, and press the
space bar to make the sound you have defined.
Notice that you can press all the keys at once,
including RETURN to double the rate of
change. It is hard at first to predict what type
of sound each set of values produce, but you
should begin to do so once you have under-
stood the parameters.

The program is initialized with data that
specify a combined envelope—after the en-
velope number and time interval (the first two
parameters), the next six values are those that
would be varied to specify a pitch envelope.
The last six parameters can be changed to
specify a sound whose amplitude varies in
time, but whose pitch remains constant. This
pitch is set by the third value in the sound
statement.

BBC AMPLITUDE ENVELOPES
The type of sound specified by an amplitude
envelope can be plotted as a graph with four
phases—Attack, Decay, Sustain and Release.
These are abbreviated to AA, AD, AS and AR.
During the Attack, the amplitude changes in
steps, the number of which is controlled by
the fifth parameter in this section of the
envelope statement—the target level at the
end of the Attack phase (ALA). The Decay is
the change of amplitude per step, and again
there is a target level (ALD) at the end of this
phase. After these two phases, there comes the
Sustain, which is the change of amplitude per
step. This time, there is no separate parameter
to limit the duration of the sustain; instead it
lasts from the end of the decay to the start of
the Release. The Release is also a change of
amplitude per step—the number depending
on how long the amplitude takes to decrease
to zero.

The pitch envelope (also available on the
Electron) also changes in steps, but it has only
three phases—unlike the amplitude
envelope's four. The six parameters that
specify this type of envelope are P11, P12, PI3
(the change of pitch per step in each of the
three sections), PN1, PN2 and PN3 (the num-
ber of steps in each section). A typical sound

Combined envelopes—BBC
A single envelope statement on the BBC
specifies a combined pitch and amplitude
envelope, but it is sometimes possible to
have one without the other. The envelope
number and time period, followed by
zeroes for each of the next six parameters,
specify an amplitude envelope—provided
suitable values are given to the last six
parameters of the statement. If however,
you design a pitch envelope, you must set a
minimum value for ALD, otherwise the
sound will not be audible. Notice also that
if you set AR to zero, then any envelope
you sound will be continuous. You can
stop the sound by simply setting AR to
any value.

generated by a pitch envelope might be an
emergency siren, which increases from a
value set by the sound statement, then re-
peatedly decreases and then increases.

The sophistication of the BBC micro's
sound handling qualities becomes apparent
when you combine both types of envelope—
pitch and amplitude. This lets you shape
sounds that are complicated to analyse, and is
one of the reasons the task of specifying
envelopes is best aided with a program such as
the one listed here that lets you see, as well as
hear, the results.

896-898
1140 	Keypresses, multiple, programming for

974-979

K
S

CUMULATIVE INDEX

An interim index will be published each week. There will be a complete index in the last issue of INPUT.

A
ADSR system, in sound synthesis

Acorn 	 1144
Commodore 64 	 1141-1142

Animals, measuring growth of 1049-1056
Animation

of UDGs in cliffhanger 	992-997
using colour fill techniques

Acorn 	 955-959
using GCOL

Acorn 	 999-1000
using paged graphics

1022-1027,1132-1137
Applications

calendar and diary program
1010-1016,1017-1021,1064-1067

hobbies file, extra options 	947-952
magnification program 	1081-1087
spreadsheet program 	1118-1126
text-editor program

852-856,878-883,914-920

B
BASIC

adding instructions to
Acorn, Dragon, Spectrum 	844-851

Basic programming
analyzing and storing sounds 1091-1095
animation with paged graphics

1022-1027,1132-1137
colour commands, Acorn 	953-959
Computer Aided Design 	998-1004
designing a new typeface 	838-843
drawing conic sections 859-863,889-895
how programs are stored 	1106-1112
mathematics of growth 	1049-1056
mechanics, principles of 	933-939
multi-key control 	 974-979
musical chords and harmonies 985-991
programming function keys 	825-829
secret codes 	960-965,1044-1048
sound envelopes

Acorn, Commodore 64 	1138-1144
speeding up BASIC programs 921-927

C
Calendar and diary program

1010-1016,1017-1021,1064-1067
Chords, musical

definition 	 985-986
programs to play

Acorn, Commodore 64 	986-991
Cliffhanger game

part 1—title page 	 904-913
part 2—adding instructions 	928-932
part 3—adding a tune 	966-973
part 4—graphics and merging 992-997
part 5—setting the scene 	1034-1043
part 6—perils and rewards 	1057-1063
part 7—initializing routine 	1101-1105
part 8—synchronizing routine

1127-1131
Codes, secret 960-965,1044-1048
Colour

defining in machine code 	1034-1043
filling in with

Acorn 	 953-959

in Teletext mode
BBC

routines for changing
Commodore 64 	 872-877

Computer Aided Design
rubber-banding and picking

and dragging 	 998-1004
Conic sections 	857-863,889-895

D
Digital clock routine
Doppler effect

E
Envelope, sound

Acorn, Commodore 64
968-971,1138-1144

in musical harmony programs 986-991

F
Filling in with colour

Acorn 	 953-959
Fox and geese game

part 1—principles and graphics
1096-1100

part 2—initializing and
mapping the moves 	1113-1117

Fruit machine game

1028-1033,1074-1080
Function keys, programming

Acorn, Commodore 64, Vic 20 	826-829

G
Games

cliffhanger 904-913,928-932,966-973,
992-997,1034-1043,1057-1063,1101-1105,

1127-1131
fox and geese 	1096-1100,1113-1117
fruit machine 	1028-1033,1074-1080
goldmine 	830-837,864-871
lunar touchdown 	1088-1090
magnification 	 1081-1087
multi-key control for 	974-979
othello 	980-984,1005-1009
wordgame 	899-903,940-945

Goldmine game 	830-837,864-871
Graphics

colour commands, Acorn 	953-959
effects using curves 	857-863,889-895
hi-res

for custom typeface 	838-843
setting up new commands

Commodore 64 	 872-877
magnification program for 1081-1087

paged, for animation
1022-1027,1132-1137

picking and dragging 	1000-1004
rubber-banding 	 998-1000
trace of sound 	 1092-1095
using Teletext mode, BBC 	1068-1073

L
Letter-generator program
Lunar touchdown game 	1088-1090

M
Machine code

games programming
see cliffhanger

merging routines 	 992-997
routines for hi-res graphics

Commodore 64
	

872-877
routine to alter BASIC
	

844-849
timer routine 	 896-898
tune routine 	 966-973

Magnification program 	1081-1087
Mathematical functions

in mechanics 	 935
in spreadsheet program 	1120
speedy use of 	 923-924
to draw curves 	857-863,889-895
to measure growth 	1049-1056

Mechanics
programs to show principles of 933-939

Memory
how BASIC programs are stored in

1106-1112
mapping, definition 1023
paged graphics in 1023-1027,1132-1137
requirements of Teletext mode

BBC 	 1068
saving vs speed 	 923

Multi-key control, programming for
974-979

Music
analyzing and storing 	1091-1095
chords and harmonies 	985-991
machine code routine for 	966-973

N
Numbers

Fibonacci
	

1056
generation program 	1054-1056

0
Othello board game

980-984,1005-1009

T
Teletext mode, BBC 	1068-1073
Text-editor program

part 1—basic routines 	852-856
part 2—editing facilities 	878-883
part 3—sorting, searching,

formatting and printout 	914-920
Timer routine

for BASIC lines 	 922
machine code 	 896-898

Typeface. setting up new 	838-843

U
UDGs

in cliffhanger game
992-997,1037-1038,1060-1062

stock, storing of 	 1040

V
Variables

managing for program speed 	923-925
setting in machine code game 1127-1131
storing in memory 	1106-1112

Waveforms
displaying and storing 	1092-1095
modulation of 	1138-1139,1142

Wordgame 	 899-903,940-945

P

	

947-952 	Paged graphics 	1023-1027,1132-1137
Plant growth program 	1052-1053
PLOT

new commands, Acorn 	953-959

	

844-851
	

R
Robotics
	 884-888

1068-1073
Hobbies file, extra options for

Instructions, adding to BASIC
Acorn, Dragon, Spectrum

SAVEing
problems with when merging 	992-997

Search routines
binary and serial 	 924-927
in text-editor program 	914-920

838-843 	SOUND command, Acorn 	1138
Sounds

analyzing and storing 	1091-1095
envelopes for modifying

Acorn, Commodore 64 	1138-1144
Spreadsheet program

part 1—theory and basic routines
1118-1126

Sort routines
in hobbies file program 	947-953
in text-editor program 	914920

Speeding up BASIC programs 921-927

The publishers accept no responsibility for unsolicited material sent for publication in INPUT. All tapes and
written material should be accompanied by a stamped, self-addressed envelope.

Add the final programming to FOX
AND GEESE and see how hard it is to
get your aggressive gaggle to corner the
intrepid fox

ij If you think modelling means parading
down a catwalk, try INPUT'S
COMPUTER PREDICTION METHODS

/ Use mathematical equations derived
from the behaviour of natural
phenomena to create unusual high-
resolution PATTERNS

L.113espoke financial planning can be
yours when you look into the possibility
of TAILORING SPREADSHEETS

C-../ What's Willie up to in this section of
CLIFFHANGER? Find out when you
count his lives, check the level of play
and keep track of the score

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

